Откуда
.
Рис. 12. Графическое решение уравнения вместимости
1 - прямая, соответствующая левой части уравнения
2 - кривая, соответствующая правой части уравнения
Необходимо заметить, что от величины Н/Т зависит еще и запас плавучести судна, поэтому при проектировании судна необходимо выбирать Н/Т еще и по этому показателю.
Коэффициент приращения V при изменении вместимости
На рис. 13. изображены кривые требуемой вместимости в функции водоизмещения для прототипа [W0(V) и Wнз0] и и проекта [W1(V) и Wнз1].
Водоизмещению V0 на рис. 6 соответствует точка А0 пересечения прямой
с кривой W0(V) и Wнз0.
При W1(V0) и Wнз1 (точка F) образуется недостаток вместимости A0F.
ДW1(V) + ДWнз1 = W1(V0) - W0(V0) + Wнз1 - Wнз0.
Для точки А1 можно записать
.
где - дW1(V)/дV тангенс угла A1FE. Произведение тангенса угла на величину ДV дает нам длину отрезка A1E. Выразив из уравнения величину ДV получим,
Рис. 13. Изменение водоизмещения при изменении вместимости
.
где зс - коэффициент приращения объемного водоизмещения при изменении требуемой вместимости,
.
Исследования показывают, что четвертый член знаменателя обычно меньше суммы второго и третьего, а следовательно, зс < 1, в отличие от коэффициента Нормана зн, который всегда больше единицы. Таким образом приращение полного объема корпуса будет опережать приращение водоизмещения, что может быть объяснено тем, что объем надводной части корпуса увеличивается быстрее чем в подводной.
В тех случаях, когда вместимость по разделам растет пропорционально только соответствующим массам (например грузовместимость пропорционально грузоподъемности), вместимость вполне обеспечивается при одновременном увеличении водоизмещения, соответствующем зн. Но тем не менее при переходе от прототипа к проекту следует учесть изменения, вызываемые наличием обоих коэффициентов зн и зс, а также характеристик и требований касающихся масс и требуемых объемов. Такой учет необходим потому, что специальные требования по характеристикам вместимости (например, удельная грузовместимость или объем помещений, приходящийся на одного пассажира) могут меняться довольно значительно. В этом случае ДV должно изменяться из за изменения W1(V0) + Wнз1, при этом приращение нагрузки может оказаться небольшим. Тогда целесообразнее менять hT, которое при определении зс считалось постоянным. Изменение hT, как правило, влияет на отношение В/Т, что связано с обеспечением остойчивости.
Уравнение вместимости для судов со средним расположением МО
Приведенные выше исследования носят общий характер и могут применяться для определения вместимости различных типов судов. Но в то же время для судов отдельных архитектурно-конструктивных типов можно дать более конкретные решения. Так, Л.М. Ногид вывел специальное уравнение для сухогрузных судов, базирующееся на рассмотрении объема их грузовых помещений. Рассмотрим вначале уравнение для судов со средним расположением МО.
Рис. 14. Схема судна со средним расположением МО
Объем, заключенный между верхней палубой и настилом двойного дна
Wп = дпLB(H - hдд),
где - дп коэффициент общей полноты теоретического объема Wп, отнесенный к LB(H - hдд), hдд - высота двойного дна.
К объему Wп могут быть добавлены объемы между комингсами люков, выступающими над верхней палубой.
Исключая из Wп объемы пиков, цистерн разного назначения (кроме цистерн между переборками МО), коридора гребного вала и т.п. и считая, что отношение исключенных объемов к Wп составляет (1 - kп), получим теоретический объем трюмной части и МО
Wт = kпдпLB(H - hдд).
Объем заключенный между переборками МО
Wм = дмLмB(H - hдд).
Тогда объем грузовых трюмов
или с учетом двойных бортов (рис. 16)
,
где Вб - средняя ширина междубортного пространства.
По полученным зависимостям можно найти удельную грузовместимость судна мс = Wгр/Ргр или переходя от теоретической к вместимости по сыпучему или штучному грузу мгр = kДWгр/Ргр, где kД - коэффициент вычета, равный 0,97 - 0,98 для сыпучего груза и 0,87 - 0,89 для штучного груза.
.
С учетом выражения для Wгр получим
.
Сравнивая уравнения для Wгр и мс можно сделать следующие выводы:
абсолютная грузовместимость растет пропорционально В, но ширина практически не оказывает влияния на удельную грузовместимость (при Вб = 0, ширина судна в уравнении для мс не фигурирует);
длина судна L, от которой Wгр зависит довольно значительно, на мс влияет сравнительно мало;
поскольку коэффициент общей полноты д связан с коэффициентом дп, для определения его влияния сделаем следующие преобразования (учитывая, что по статистике дп ? д + 0,1, а дм ? в ? 1)
.
По данным А.В. Бронникова, для грузовых судов Lм/L ? 0,12, а kп всегда меньше единицы. Из-за этого, при увеличении д грузовместимость растет, хотя и незначительно, поскольку второй член последнего выражения мал по сравнению с kп;
С увеличением коэффициента зг уменьшается мс, так как, чем больше значение зг, тем меньше при данной грузоподъемности водоизмещение D, а следовательно, и внутренний объем судна;
Увеличение Н и отношения hТ = Н/Т вызывает прямо почти пропорциональный рост абсолютной и удельной грузовместимости.
Для определения отношения hT, соответствующего заданной удельной грузовместимости, преобразуем выражение, полученное для мгр
.
Подставляя в данное выражение значения д, а также принятые по прототипу или по статистическим данным дп/д, Lм/L, kп и hдд/Т, можно найти hT. Чтобы оценить порядок величины hT, упростим выражение. Принимая, что по статистике д/[kпдп - дм(Lм/L)] ? 1,29, а г = 1,025 т/м3, получим
.
Данное выражение позволяет грубо оценить значение hT, при котором обеспечивается заданная грузовместимость судна.
При перевозке части груза на палубе при определении hT необходимо учитывать только тот объем, который должен находиться в трюмах и твиндеках, т.е. nРг, где n - доля трюмного груза.
Следует заметить, что по данным Л.М. Ногида и Н.Е. Путова отношение высоты двойного дна к осадке hдд/Т составляет для сухогрузных судов в среднем 0,16, но для таких судов, как рудовозы значение hдд/Т может быть существенно превосходить указанную величину.
При перевозке относительно тяжелых грузов (мг < 1) вместимость судна (при определенном из уравнения нагрузки водоизмещением) обеспечивается уже при нулевом надводном борте, то есть при hT = 1 (рис. 15). Составлять уравнение нагрузки в этом случае не требуется, а высоту
борта необходимо определять по требованиям предъявляемым к другим характеристикам судна (например, по Правилам о грузовой марке).
Вместимость судов с кормовым расположением МО
При расположении МО в кормовой части судна более сложным является вопрос об определении значений Lм и дм. Однако, можно предположить, что объем помещений МО, приходящийся на один киловатт мощности мм = Wм/N, остается постоянным независимо от расположения МО. Тогда
Wм = дм срLм срB(H - hдд) ? дм кLм кB(H - hдд),
где индексы "ср" и "к" обозначают соответственно среднее и кормовое расположение МО. Из этой зависимости следует, что
дм срLм ср ? дм кLм к,
что дает право использовать формулы выведенные для судов со средним МО.
Рис. 16. Схема судна с кормовым расположением МО
Полезная грузовместимость судна, с учетом двойных бортов (рис. 16)
Wг = kДдтLт(В - 2Вб)(H - hдд),
где дт - коэффициент полноты теоретического объема трюмной части, Lт - длина трюмной части. С учетом того, что мг = Wг/Pг = Wг/зггдLBT, получим
,
где здл = Lт/L - коэффициент утилизации (использования) длины судна.
Анализ формулы приводит к тем же выводам, что и в случае расположения МО в средней части судна.
Теперь можно найти отношение hT, удовлетворяющее заданной удельной погрузочной кубатуре груза, при определенном водоизмещении.
.
Принимая, что по статистике дт ? 1,15д, а г = 1,025 т/м3, получим
.
Вместимость наливных судовВ отличие от сухогрузов, наливные суда в своей танковой части, кроме грузовых танков имеют балластные и отстойные цистерны (рис. 17). Таким образом, общий объем танковой части будет складываться из трех объемовWт = Wг + Wбл + Wо.
где Wг = Pг/гг = (зг/гг)D - объем грузовых танков, Wбл = (збл/г)D - объем балластных цистерн, збл - коэффициент балластировки, Wо = сWг - объем отстойных танков, с - доля вместимости отстойных цистерн, которая по правилам должна составлять не менее 3 % от Wг.
Рис. 17. Схема наливного судна
Таким образом
,
Однако теоретический объем танковой части, определяемой ее геометрией
Wт = kДдтLт(В - 2Вб)(H - hдд),
где kД ? 0,95 - коэффициент вычета на телесность набора и недолив жидкости.
Сопоставляя два выражения для Wт, получаем
.
Для танкеров, у которых балластные и отстойные цистерны размещаются в отсеках двойного дна и двойных бортов, т.е. с = 0, збл = 0 и с учетом того, что дт ? 1,15д, г = 1,025 т/м3, получим
.
Регистровая вместимость судна
Вместимость судна служит основанием для расчета, касающихся стоимости фрахтования судна, взимания налогов и сборов, оценки продажной стоимости. Таким образом, вместимость судна, определенная по этим правилам или регистровая вместимость, является одной из основных эксплуатационных характеристик судна. В 1982 г. в силу вступили правила Международной конвенцией по обмеру судов 1969 г., в которых регламентируется порядок определения вместимости различных судов.
Единицей измерения регистровой вместимости ранее явлись регистровые тонны, 1 рег.т. = 100 фут3 = 2,83 м3, сейчас это безразмерная величина.
Различают валовую регистровую вместимость (gross tonnage), характеризующую общий объем корпуса и надстроек и чистую регистровую вместимость (net tonnage), характеризующую объем грузовых и пассажирских помещений.
Валовая регистровая вместимость определяется по формуле
GT = k1W,
где k1 = 0,2 + 0,02 lg W, W - общая техническая вместимость всех закрытых помещений судна. К закрытым помещениям кроме корпуса и надстроек относятся и кожухи дымовых труб, грузовые, светлые и сходные люки.
Чистую регистровую вместимость определяют по выражению
,
где k2 = 0,2 + 0,02 lg W г, Wг - общий теоретический объем грузовых помещений, k3 = 1,25•(1 + GT·10-4), п1 - количество пассажиров размещаемых в каютах с числом коек не более восьми, п2 - количество прочих пассажиров.
При определении величины NT осадка грузового судна берется по грузовую марку (не лесную), а для пассажирских судов по осадке соответствующей самой высокой ВЛ деления судна на отсеки.
Кроме этого при вычислении NT действуют следующие ограничения:
при (п1 + п2) < 13, второе слагаемое принимается равным нулю;
при , отношение Н/Т должно считаться равным не менее 1,33;
первое слагаемое должно приниматься не меньше 0,25GT;
величина NT должна приниматься не меньше 0,30GT.
На начальных этапах разработки проекта регистровую вместимость можно определить по следующим приблизительным зависимостям:
- для пассажирских судов GT ? D;
- для танкеров и балкеров GT ? 0,65DW;
- для универсальных сухогрузов GT ? 0,70DW;
- для рефрижераторов и контейнеровозов GT ? DW;
Для всех судов можно считать, что NT ? 0,55GT.
Обеспечение остойчивости при проектировании
На начальных этапах проектирования вопросы, связанные с остойчивостью судна относятся к наиболее важным, поскольку эксплуатационные характеристики проекта будут зависеть от показателей остойчивости. Но из-за неопределенности требований предъявляемых к остойчивости судов и необходимости выражения этих требований через какие-то показатели, которые можно установить на начальных этапах проектирования приходится сталкиваться с рядом трудностей. Следует отметить, что выражение требований через какой-то один показатель не отражает всех аспектов проблемы, связанных с остойчивостью. Кроме этого выражение требований происходит не прямо, а косвенно.
Из-за указанных обстоятельств возникает неопределенность при выборе элементов проектируемого судна. Нередко результаты начальных этапов проектирования приходится корректировать на более поздних этапах, когда появляется возможность провести прямые расчеты остойчивости судна по теоретическому чертежу.
Таким образом, для избежания ошибок на ранних стадиях проектирования необходимо как можно более обоснованно выбрать критерий остойчивости и определить предъявляемые к этому критерию требования - их состав и количественные значения.
Наиболее полное представление об остойчивости судна дает его диаграмма статической остойчивости. Но для ее построения необходимо иметь теоретический чертеж, который не может быть получен до установления главных размерений. Из-за этого на ранних стадиях проектирования, то есть при определении основных элементов судна необходимо использовать такой показатель остойчивости, который может быть выражен через искомые величины, то есть через главные размерения и коэффициенты полноты. Таким требованиям отвечает начальная метацентрическая высота h. Но поскольку метацентрическая высота зависит от абсолютных размеров судна, достаточно трудно установить ее рациональное значение как критерия остойчивости. Поэтому в ТПС в качестве универсального показателя остойчивости принимают не абсолютную, а относительную метацентрическую высоту - отношение начальной метацентрической высоты к ширине судна:
.
Преимущество использования этого критерия остойчивости выражается в его стабильности для различных типов судов. При этом считается, что при равенстве относительных метацентрических высот такие показатели, как угол крена, амплитуда качки, вертикальные ускорения у различных судов будут равными.
Например, из теории корабля известна формула для определения периода бортовой качки судна,
,
где Ix + ДIx - момент инерции массы судна относительно центральной продольной оси с учетом присоединенной массы воды, тмс2. Определить значение данной величины на ранних стадиях проектирования представляется затруднительным. В то же время момент инерции связан с водоизмещением зависимостью
,
где rx - радиус инерции (м). Данную величину обычно выражают в долях ширины судна, rx = kB. Тогда после подстановки получим
,
так называемую, капитанскую формулу, где с = 2рkg-1/2. Для большинства судов коэффициент с лежит в пределах 0,72 - 0,82. Из структуры формулы видно влияние h на период бортовой качки.
Амплитуда качки Иmax в условиях резонанса связана с углом волнового склона бволн и безразмерным коэффициентом сопротивления качке м следующей зависимостью,
.
Для транспортных судов коэффициент м зависит от величины .
,