Анализ методов улучшения жидкостекольных смесей

Инден-кумароновые смолы выпускаются коксохимзаводами по ГОСТ 9263—66.

Хорошие результаты по улучшению выбиваемости НСС получены при добавке в смесь каменноугольной смолы марки B (ГОСТ 4492– 65) (табл. 12).

Для улучшения выбиваемости обычных быстротвердеющих жидкостекольных смесей добавляют мазут. Впервые он был применен на Коломенском заводе тяжелых станков.

Способ улучшения выбива­емости НСС добавкой мазута привлекает своей дешевизной, простотой и удобством дозирования. Однако попытки многих литейщиков применить мазут для улучшения выби­ваемости НСС оказывались безуспешными, поскольку не все его марки пригодны для этой цели: при вводе 0,1–0,3% мазута резко уменьша­лась устойчивость пены, а жидкая подвижность НСС исчезала еще в смесителе.

 

Таблица 12

Влияние добавки каменноугольной смолы на выбиваемость НСС

Добавка каменно-угольной смолы, %


Работа выбивки, Дж

после нагрева до температуры, °C

Из отливок

20

200

400

600

800

1000

1200

Чугуна

стали

0,5

1,0

2,0

2,2

2,2

2,2

2,2

1,6

2,4

3,0

4,0

1,4

1,5

1,5

2,8

1,8

0,8

0,8

1,0

2,2

1,3

0,6

0,2

3,2

1,8

1,4

0,6

5,0

2,6

2,2

1,7

10–12

1,0

0,5

0,2

20–25

17,0

7,0

1,5

В связи с этим в КПИ было изучено влияние различных марок ма­зута на технологические свойства НСС. Известно, что на нефтепере­рабатывающих заводах разделяют нефть на составляющие в зависимос­ти от температуры кипения (конденсации) последних. Полученный в результате перегонки нефти мазут является полупродуктом и носит название прямогонного или мазута ABT (от названия установки — атмосферно-вакуумно-трубчатая). При крекинге мазута образуется крекинг-остаток, часть которого используется как товарный мазут, а часть — для получения нефтяного кокса.

Согласно ГОСТ 10585 — 65, товарный мазут как топливо выпуска­ется следующих марок: флотский (Ф5 и Ф12); топочный (40, 100 и 200) и для мартеновских печей (МП). Основной частью мазута любой марки является прямогонный мазут, крекинг-остаток либо их смесь. Мазуты различных марок различаются, в основном, вязкостью, температура­ми вспышки и застывания, теплотой сгорания. Содержание в мазуте керосина, газойля, солярной фракции и других примесей ГОСТом не регламентируется. На многих заводах в мазут для снижения темпе­ратуры застывания, уменьшения вязкости и др. вводят керосин, га­зойль и другие составляющие.

Нефтепродукты по-разному влияют на свойства НСС. Например, керосин, газойль, соляровая фракция  резко уменьшают текучесть НСС даже при добавке их в очень малом количестве (0,1%). В то же время прямогонный мазут  и крекинг-остаток  можно вводить в НСС в коли­честве до 3% без значительного изменения текучести смеси. Это обусловлено большой молекулярной массой прямогонного мазута и кре­кинг-остатка по сравнению с легкокипящими нефтепродуктами я вследствие этого малой способностью его к гашению пены.

Исследования изменения поверхностного натяжения  жидкостекольной композиции с ДС-РАС при добавке к ней различных нефте­продуктов показали, что при добавке керосина ее поверхностное на­тяжение растет с 32 . 10-3 Н/м до 41 . 10-3 Н/м, тогда как при до­бавке мазута оно сохраняется практически постоянным. Поэтому в НСС можно вводить прямогонный мазут, крекинг-остаток или их смесь которые не загрязнены легкокипящими нефтепродуктами в НСС нельзя добавлять мазут Ф5, который согласно ГОСТу содер­жит не менее 20% керосино-газойлевой фракции.

В КПИ исследовано влияние на свойства НСС мазутов разных марок, выпускаемых Одесским, Херсонским, Кременчугским На-дворнянским, Дрогобычским, Новокуйбышевским и Ухтинским (Коми) нефтеперерабатывающими заводами. Исследования по­казали, что мазуты марки 40, выпускаемые Одесским, Херсонским Дрогобычским и Надворнянским заводами, из-за содержания в них керосина, соляровой фракции и др., не пригодны для улучшения выбиваемости НСС, так как быстро гасят пену и резко снижают текучесть смеси. Прямогонный мазут и крекинг-остаток указанных заводов впол­не пригодны для ввода в НСС с целью улучшения выбиваемости по­скольку не содержат легкокипящих фракций. В табл. 13  показано влияние различных марок мазута Одесского нефтеперерабатывающего за­вода на свойства НСС.

При добавке 2–3% прямогонного мазута или крекинг-остатка НСС сохраняет хорошую текучесть, высокую прочность.

Таблица 13

 

Влияние добавки мазута на свойства НСС

Марка

мазу­та

или вид



Добавка мазута в НСС, %



Теку­честь

, мм



Устой-

чи­вость

пе­ны,

мин



Прочность,

кгс/см2

(  8*104 Па)

Газопроница-

емость, ед.

1 ч

24 ч

1 ч

24 ч

40

40


0,5

1,0



90                             6–7

Смесь не течёт

3,5




9,5



102



275



Прямо-

гонный


0,5

1,0

2,0

3,0

100

100

100

90

13

11

8

5

1.8

1.7

1.8

2,5

7,0

8,7

10,0

12 ,0

42

46

80

90

326

398

400

500

Крекинг

Остаток

0,5

1,0

2,0

3,0

105

100

100

90

10

8

9

4

1,8

2,5

1,9

3,0

5,0

6,1

6,7

12,0

10

55

67

50

610

610

540

610

Хорошие результаты дает мазут марки 100, выпускаемый Кре­менчугским, Ухтинским и Новокуйбышевским заводами. Мазут марки 100 Кременчугского завода представляет собой обычный прямогонный мазут и его можно вводить в НСС до 3%. При этом текучесть НСС вполне удовлетворительная, прочность высокая (2,0—3,5 кгс/см2, или (19,6—34,6) • 104 Па через 1 ч) и газопроницаемость хорошая (60—80 ед. через 1 ч и 500—700 ед. через 24 ч после заливки).

Мазут марки 100, а также прямогонный мазут и крекинг-остаток Ухтинского завода можно вводить до 4% без заметного ухудшения текучести и других свойств НСС, поскольку они не содержат легкокипящих примесей.

В табл. 14 показано влияние количества мазута на выбиваемость НСС.

Из таблицы видно, что мазут резко улучшает выбиваемость НСС, даже при прогреве смеси до 1200° С.

При введении органических добавок выбиваемость НСС в большой мере зависит от количества сажистого углерода, образующегося из

Таблица 14

Влияние добавки мазута на выбиваемость НСС

Добавка мазута, %

Работа выбивки, Дж, при нагреве НСС до температуры, °C

20

200

400

600

800

1000

1200

0,5

1,0

2,0

2.2

2,2

2,2

2,2

1,8

3.0

4.0

6,0

1,4

2,4

2,0

1,8

1,6

2,0

1,5

1,3

2,2

1,5

1,0

0,8

3,2

2,0

1.5

0,7

5,2

2,5

1,7

0,7


этой добавки при нагреве смеси. Добавки, выделяющие большое коли­чество сажистого углерода (инден-кумароновые смолы, мазут и др.), улучшают выбиваемость намного больше, чем  углерод - содержащие до­бавки, образующие меньше сажистого углерода.

Такое влияние сажистого углерода подтверждают также опыты, при которых в НСС вместе со смолами вводили окислитель – нитрат аммония. Окислитель уменьшал количество сажистого углерода, вследствие чего выбиваемость ухудшалась. Размер частиц и рас­пределение образовавшегося сажистого углерода оказывают большое влияние на выбиваемость НСС. Например, при вводе 0,25% сажи вы­биваемость НСС составляла около 17 Дж, тогда как при вводе 0,5% инден-кумароновой смолы, из которой образуется тоже примерно 0,25% сажистого углерода, выбиваемость составляет лишь 1 Дж.

Количество выделяющегося при нагреве сажистого углерода за­висит от строения вводимых в НСС органических веществ и возрастает с увеличением молекулярной массы и при переходе от линейного к цик­лическому строению молекулы вещества. Так, инден-кумароновые смолы, молекулы которых имеют два бензольных кольца, образуют 40–45% сажистого углерода, а синтетические смолы, молекулы ко­торых имеют одно бензольное кольцо – 25­­–30 процентов.

При нагреве фенолоформальдегидных смол количество выделяюще­гося сажистого углерода и влияние смол на выбиваемость НСС зависят от количества находящегося в них фенола. Чем больше в них фенола, тем больше образуется сажистого углерода и тем лучше выбиваемость НСС. Рассмотренные выше резольные смолы (№ 228, 214 и др.) содер­жат больше связанного фенола, поэтому выделяют при нагреве больше сажистого углерода и больше улучшают выбиваемость НСС по срав­нению с новолачными смолами (№ 15, 104 и др.).

По механизму действия на улучшение выбиваемости НСС органи­ческие вещества можно разделить на три группы.

 К первой группе можно отнести вещества, воздействие которых на выбиваемость смеси связано с выделением при нагреве большого коли­чества газов, например, древесные опилки с окислителем. Такие до­бавки эффективны при нагреве НСС не выше 700–720° С. При более высокой температуре поры в расплавленной композиции завариваются и выбиваемость НСС не улучшается. Вещества первой группы улуч­шают выбиваемость НСС только из чугунных отливок.

Во вторую группу входят вещества, которые при нагреве не претер­певают агрегатных изменений и в которых после нагрева до 1200°C коксовый остаток составляет 90–95%. К веществам данной группы от­носятся черный и серебристый графит, нефтяной и каменноугольный кокс и др. Вещества этой группы улучшают выбиваемость НСС в ос­новном из чугунных отливок и лишь незначительно из стальных.

 К третьей группе относятся вещества, образующие при нагреве значительное количество сажистого углерода, который, распределя­ясь в НСС, препятствует спеканию пленки композиции. В зависимости от количества выделяющегося при 1200°C сажистого углерода веще­ства третьей группы, в свою очередь, можно разделить на три под­группы.

  В первую подгруппу входят вещества, выделяющие до 20% сажистого углерода (торф, патока, гидрол и др.). Они эффек­тивно улучшают выбиваемость НСС из чугунных отливок при прогре­ве смеси до 700–720° С.

Ко второй подгруппе относятся вещества, которые вы­деляют 20—30% сажистого углерода (смолы № 74 и 104, древесные  опилки и др.). Они значительно улучшают выбиваемость НСС из чу­гунных отливок и в некоторой степени и из стальных (при нагреве НСС не более 1000–1200° С).

Вещества третьей подгруппы выделяют более 30% са­жистого углерода и эффективно улучшают выбиваемость НСС как из чугунных, так и из стальных отливок. К этой группе относятся смолы инден-кумароновая, стирольно-инденовая, каменноугольная, № 236, мазут и др.














3. Выбиваемость ЖСС с жидкими отвердителями










 

3.1.Выбиваемость ЖСС с ацетатом этиленгликоля

 

   Повышенное внимание литейщиков к жидкостекольным смесям с жидкими отвердителями объясняется рядом важ­ных преимуществ этих смесей по сравнению с другими ЖСС: пониженным содержанием связующе­го при больших прочностных показателях, лучшей выбиваемостью из отливок и гарантией высокого качества поверхно­сти.

   Применяющиеся за рубежом жидкие отвердители, выпус­каемые специализированными фирмами, представляют собой ацетаты глицерина или этиленгликоля. В нашей стране промыш­ленное производство таких отвердителей отсутствует.        В 1975 г. НПО «ЦНИИТмаш» были разработаны ЖСС с жидким отвердителем пропиленкарбонатом— сложным эфиром пропиленгликоля и угольной кислоты. Вы­пускается он опытными партиями ПО «Ангарскнефтеоргсинтез». Смеси с пропиленкарбонатом применяют в настоя­щее время на 13 заводах страны при получении стержней и форм для стальных, чугунных и алюминиевых отливок.

   Из смесей с пропиленкарбонатом изготовляют: стержни для стальных отливок — на Харьковском турбинном заводе им. Кирова, Старо-Краматорском заводе им. Орджоникидзе, ПО «Электротяжмаш» (г. Харьков), «Сибтяжмаш», «Сибэнергомаш», стержни для чугунных отливок — на Гомель­ском и Сумском заводах «Центролит», формы для чугун­ных отливок — на Московском чугунолитейном заводе «Станколит» и ПО «Ташкентский тракторный завод», стержни по­вышенной сложности для алюминиевых отливок — на Харь­ковском заводе им. Малышева и др.

Однако поставка пропиленкарбоната литейному производ­ству ограничена, и промышленный выпуск его в ближайшие годы не планируется. Кроме того, смеси с пропиленкарбо­натом имеют ограниченную живучесть (Ж) 10...12 мин, затрудняющую изготовление крупных форм и стержней, осо­бенно в летний период. Ж смесей с пропиленкарбонатом можно увеличить до 25 мин с помощью сложных эфиров фталевой кислоты, хорошо сочетающихся с пропиленкарбо­натом. Однако использование на практике этого метода ре­гулирования Ж связано с определенными неудобствами. Поэтому НПО «ЦНИИТмаш» в последние годы совместно с химиками ведет работы по получению других более техно­логичных сложноэфирных отвердителей с использованием от­носительно недефицитного и сравнительно дешевого сырья. К таким отвердителям относятся ацетаты этиленгликоля[3].

   В результате исследований, проведенных НПО «ЦНИИТ­маш» совместно с Дзержинским ПО «Синтез», разработана и уточнена технология синтеза отвердителей на основе ацетатов этиленгликоля, определен состав отвердителей в соот­ветствии с требованиями литейного производства.

   С помощью разработанной технологии можно получать отвердители различной активности с заранее заданными свой­ствами. Ж и скорость твердения смесей может регулировать­ся от 8...10 мин до 60.,..90 мин.

 На рис. 26,а, б видна кинетика твердения смесей и Ж при применении отвердителей четырех марок. Различным маркам АЦЭГ даны условные обозначения: (быстрый) с Ж =8.. 10 мин, 2СБ (средне быстрый) с Ж=18...20 мин, ЗСМ (средне медленный) с Ж==27...30 мин, (медленный) с Ж=50... 55 мин. В случае необходимости может быть получена пя­тая марка АЦЭГ 5ММ с Ж=90 мин. Смеси   содержат 3,5 масс. ч. ЖС и 0,35 масс. ч. ацетатов этиленгликоля.

В Польше разработан и находит применение отвердитель «Флодур», представляющий собой также ацетат этиленгли­коля. Разработанные автором АЦЭГ не только не уступают, но и превосходят по прочностным характеристикам смеси с отвердителем «Флодур».


Рис.26. σ(а) и жидкотекучесть (б) смесей различных марок АЦЭГ


Сравнительные свойства смесей (основа, масс. ч.: 100 лю­берецкого песка; 3,5 ЖС M=2,5;   p=1480 кг/м) с 0,35 масс. ч. отечественного отвердителя АЦЭГ (смеси 1, 3) и 0,4 масс. ч. отвердителя «Флодур» (смеси 2, 4)  приведены ниже.






Ж, мин



 

1

 

 

2

 

3

 

4

 

13

 

12

 

22

 

26

 ,Мпа,через,ч:





1

1,57

0,53

0,83

0,47

8

2,13

1,1

2,6

1,66

14

4,4

3,5

5,0

4,1


Выбиваемость смесей оценивалась по трудоемкости уда­ления опытных стержней сечением 100Х100 мм и высотой 180 мм из стальной отливки (470Х170Х180 мм, стенка тол­щиной 35 мм, масса 150 кг). Трудоемкость выбивки смеси для СО--процесса, содержащей 6 масс. ч. ЖС принята за 100%, ЖСС и ПСС (с 6 масс. ч. ЖС) составила 68%, ЖСС с АЦЭГ (3,5 масс. ч. ЖС) — 38%, ЖСС с АЦЭГ (2,5 масс. ч. ЖС) — 12,5%, ЖСС с синтетической смолой— 7,5%.

При введении в смеси с АЦЭГ сахаросодержащих веществ или специальных диспергирующих поверхностно-активных ве-

   

Рис. 27.Влияние относительной влажности воздуха        (%) на кинетику твердения:

                                  1—30; 2— 50; 3 — 70; 4 — 90.

ществ содержание ЖС может быть снижено с 3,5 до 2,5 масс. ч. при сохранении высоких прочностных свойств и низ­кой осыпаемости, что позволяет почти в 3 раза улучшить выбиваемость, приблизив ее к выбиваемости ЖСС с синте­тическими смолами. По данным автора, снижение содержа­ния ЖС на каждые 0,5 масс. ч. (без введения каких-либо добавок) улучшает выбиваемость смесей со сложноэфирными отвердителями примерно в 2 раза.

   Жидкие отвердители на основе АЦЭГ выгодно отличаются от других сложноэфирных отвердителей, в частности пропиленкарбоната, тем, что позволяют снизить содержание ЖС в смеси путем понижения  без ощутимой потери прочност­ных свойств в пределах допустимой осыпаемости.

  Так,  ЖС можно снизить с 1480...1500 до 1400 и 1450 кг/м при том же содержании в смеси разбавленного ЖС и тем самым дополнительно улучшить ее выбиваемость. В смесях с пропиленкарбонатом снижение плотности ЖС при­водит к заметному сокращению Ж, падению прочности и повышению осыпаемости.

  На кинетику твердения и прочность смесей большое вли­яние оказывает относительная   влажность (W) воздуха (рис. 27). Чем выше относительная W, тем медленнее темп нарастания прочности и ниже ее абсолютные значения. С повышением W с 30 до 90%, что соответствует дождливой сырой погоде, прочность снижается почти в 3 раза, однако это не оказывает существенного влияния на качество гото­вых стержней и возможность их дальнейшего использования.

  Отличительной особенностью смесей со сложными эфирами является их хорошая сыпучесть из-за низкого содержа­ния в смеси жидкой фазы. Вследствие этого смеси облада­ют легкой уплотняемостью, что позволяет использовать виб­роуплотнение взамен встряхивания, прессования, пескомет­ной формовки и пр.

  Для смесей с жидкими отвердителями характерен высокий темп нарастания прочности после окончания живучести, что имеет весьма важное значение для сокращения цикла изго­товления форм и высвобождения оснастки. Извлечение мо­делей из затвердевшей формы можно осуществлять при до­стижении смесью манипуляторной прочности, величина ко­торой для такого типа смесей <0,4 МПа. На рис. 28 .представ­лены соответствующие данные по кинетике нарастания проч­ности смесей со сложными эфирами пои различной Ж, из­меняющейся в интервале 7...110 мин. Смеси   приобретают манипуляторную прочность в течение времени, превышаю­щего Ж примерно в 1,5—2 раза.


Рис. 28. Кинетика твердения смесей  с  различной  живучестью, мин:

1—1; 2—14; 3—23; 4—38; 5—84; б—110

   Смеси с жидкими отвердителями могут заменять жидкостекольные ЖСС,. ПСС, СО- процесс, а, в ряде случаев, и ЖСС с синтетическими смолами и применяться для изго­товления форм и стержней. 

  ЖСС со сложноэфирными отвердителями и технология из­готовления из них форм и стержней имеют следующие пре­имущества:

высокую общую и поверхностную прочность форм и стерж­ней при пониженном содержании связующего;

улучшенную выбиваемость по сравнению с выбиваемостью известных жидкостекольных смесей;

удобство работы с жидкими отвердителями вместо порош­кообразных (феррохромового шлака или нефелинового шла­ма);

повышение чистоты и качества , резкое сокращение дефек­тов и брака отливок по ужимам., пленам и песочным рако­винам;

заметное снижение трудоемкости изготовления форм и стержней;

небольшую токсичность и соответствие повышенным санитарно-гигиеническим требованиям.

    К недостаткам смесей со сложными эфирами можно отне­сти:

более высокую, чем у ЖСС с синтетическими смолами, хрупкость, что может вызывать поломки при изготовлении стержней повышенной сложности;

более трудоемкую, чем у ЖСС со смолами, выбиваемость из отливок;

пониженную водостойкость, в связи с чем рекомендуется применять преимущественно самовысыхающие противопригарные покрытия.

Смеси с АЦЭГ сопоставимы по стоимости со смесями для СО - процесса (с учетом стоимости углекислого газа).


3.2.Выбиваемость ЖСС с жидким

кремнийорганическим отвердителем.

 

   Жидкостекольные самотвердеющие смеси с жидким кремнийорганическим отвердителем предназначены для повышения ка­чества поверхности отливок и используются как облицовочные смеси для стержней и форм ответственных отливок различных отраслей машиностроения , а также в качестве единой смеси для особо сложных стержней в целях предотвращения образования  поверхностных дефектов.

  В качестве отвердителей и катализаторов твердения приме­няют жидкие кремнийорганические полимеры и органические мономеры. Органические мономеры вводят в ЖС перед приго­товлением смеси; эта композиция может храниться в закрытой тape в течение длительного времени.

Содержание мономера и кремнийорганического полимера оп­ределяют живучесть и прочность смеси. В отличие от жидко­стекольных смесей, отверждаемых сложными эфирами, для при­готовления смеси с жидкими кремнийорганическими отверди­телями может применяться ЖС с М=2,2...3,2, однако лучшие результаты достигаются при использовании высокомодульного стекла. Свойства смесей: живучесть Ж=5...120 мин; че­рез 1 ч (при Ж—60 мин) —0,1...0,2 МПа; (через 24 ч — 4,5...6 МПа; осыпаемость через 24 ч—0,05%; остаточная проч­ность (после нагрева до 800°С и охлаждения — 1 МПа. Смеси могут отверждаться с помощью СО без последующего ухудшения прочностных свойств при хранении стержней и форм.

Жидкостекольные смеси с жидкими кремнийоргаиическими отвердителями позволяют получить смеси с 1...3 масс. ч. ЖС, улучшить качество поверхности и точности отливок (Rz 40 мкм. 3—4-й классы чистоты).

Рассмотрим особенности выбиваемости смесей с жидкими кремнийорганическими отвердителями[14]. На рис. 29 видна температурная зависимость   для смеси с кремнийорганическим

     Рис. 29. Зависимость  жидкостекольной смеси

   (3 масс. ч. ЖС, М ==2,2) на

кварцевом   песке   от

 температуры.

твердителем (кривая 1) и для смеси с пропиленкарбонатом (кривая 2). Если в низко температурной области (Т=400... 600°С) выбиваемость обеих смесей мала, то в высокотемпера­турной (800...1000°С)  смесей с кремнийорганическим от­вердителем в 1,5 раза меньше, а соответственно выбиваемость лучше. Таким образом, применение кремнийорганического отвердителя позволяет улучшать выбиваемость смесей главным образом в высокотемпературной области Существенное влияние на выбиваемость смесей с кремнийорганическими отвердителями оказывает количество ЖС в смеси и М. На рис. 30 видно изменение  после нагрева до 8OO°C и охлаждения в зависимости от содержания ЖС в смеси. Для смеси с пропиленкарбонатом (.кривая 3) и кремнийорга­ническим отвердителем (кривая 2) существенное различие в выбиваемости наблюдается у смесей, содержащих>3 масс. ч. ЖС (М=2,2); у смеси с 2 масс. ч. ЖС (М=2,2) влияние отвердителя на выбиваемость смесей на кварцевом песке прак­тически нивелируется.

Зависимость  от содержания связующего существенно меняется при применении высокомодульного ЖС (М=3,1), что возможно в случае использования кремнийорганического отвердителя. С уменьшением содержания ЖС (М=2,2) с 3 до 2 масс. ч.  снижается почти в 3 раза (кривая 1).

Сопоставить результаты испытаний смеси с высокомодульным ЖС, отверждаемой пропиленкарбонатом, не представля­ется возможным из-за ее малой Ж.

 

 

 

Рис. 30. Изменение  смеси в зависимости от содержания ЖС.

Для смесей с пониженным содержанием ЖС выбиваемость улучшается только в том случае, если при их приготовлении не используется ЖС с низким модулем. Применение таких сме­сей показало, что улучшение  Ж, прочности, осыпаемости за счет снижения М жидкого стекла нивелирует эффект улучше­ния выбиваемости от снижения его содержания и даже может привести к ухудшению выбиваемости.

Необходимо отметить еще одну особенность выбиваемости смесей с кремнийорганическим отвердителем: для стержней из смеси на кварцевом песке с 1,5...2,0 масс. ч. ЖС продолжи­тельность гидровыбивки оказалась такой же, как для стержней из смоляных смесей, однако при выбивке с помощью механи­ческого инструмента продолжительность удаления жидкостекольных смесей в несколько раз больше продолжительности удаления смоляных.

Смеси с ЖС и кремнийорганическим отвердителем, исполь­зующие в качестве наполнителя .хромит или хромомагнезит, отличаются рядом особенностей. Содержание ЖС в этих сме­сях составляет 3,5...4,5 масс. ч., что в 2—2,5 раза меньше, чем в применяемых хромитовых смесях, отверждаемых СО. Хромитовые и хромомагнезитовые смеси с ЖС и кремнийоргани­ческим отвердителем могут отверждаться с помощью СО без  последующего ухудшения свойств при хранении стержней и  форм.

Работа выбивки жидкостекольных хромитовых смесей с кремнийорганическим отвердителем  в 10—15 раз меньше ра­боты выбивки хромитовых смесей с 7...10 масс. ч. ЖС. В ин­тервале нагрева 400...1000° С работа выбивки этих смесей практически постоянная (температурные экстремумы выбивки не наблюдаются). Другой аномалией жидкостекольной хромитовой смеси с кремнийорганическим отвердителем является слабая зависимость работы выбивки от модуля ЖС в интервале  400...1000 ° С при одинаковом его содержании.

   Применение кремнийорганических отвердителей в жидкосте­кольных хромитовых смесях позволило существенно улучшить выбиваемость за счет сокращения содержания ЖС и изменения структуры связующей композиции после охлаждения. В то же время использование в хромитовых смесях с 7...10 масс. ч. ЖС добавок (глин, бокситов и др.), обеспечивающих улучшение выбиваемости путем повышения температуры плавления связующей композиции, приводило к ухудшению противопригарных свойств.














Выводы

   Анализ литературных источников показал ,что для улучшения выбиваемости   жидкостекольных смесей из отливок применяют следующие методы:

1)Введение в смесь неорганических добавок(глины,боксита,мела и др.).

Действие неорга­нических добавок на условия выбивки смесей с жидким стеклом принципиально одинаково. Оно основано на том, что в процессе нагрева вводимое вещество реагирует с составляющими жидкого стекла NaO и SiO, образуя соответствующее тройное соединение. Температура плавления тройного соединения соответствует тем­пературе второго максимума работы, затрачиваемой на выбивку стержней.

2)Введение органических добавок(древесного пека,битума ,графита и др.).

При низких температурах прогрева стержней до 400º C введение органических добавок может содействовать прорыву пленок и снижению работы, затрачиваемой на выбивку стержней. При высоких температурах, превышающих   800°C, в условиях недостатка кислорода может происходить неполное сгорание органических добавок, в результате чего между силикат­ной пленкой связующего вещества и зерном наполнителя обра­зуется инертная прослойка сажистого углерода.

   Известно, что инертные прослойки снижают адгезию пленок и уменьшают прочность смесей. Поэтому введение таких добавок может уменьшить абсолютное значение величины A, при температуре образования второго максимума или близких к ней.

3)Уменьшение содержания жидкого стекла.

Т.к жидкое стекло обладает исключительно высокой адгезией к кварцу, то протекает когезионный тип разрушения смеси. В результате прочность смеси будет непосред­ственно зависеть от количества введенного в нее связующего мате­риала. Чем меньше жидкого стекла будет введено в смесь, тем легче окажется выбивка стержней из отливок.

Список использованной литературы

Список использованной литературы:

1. Берг П. П. Формовочные материалы. - М.: Машгиз ,1963.- 408с.

2.Борсук П.А.,Лясс А.М.Жидкие самотвердеющие смеси.-М.:Машиностроение,1979.-   255с.

3.Борсук П.А.Смеси с жидкими отвердителями.//Литейное производство.-1990.-№2.-c.15-17.

4.Винокуров В.В.,Иоговский В.А.,Мармонтов Е.А и др.Улучшение выбиваемости жидкостекольных смесей из отливок.//Литейное производство.-1966.-№2.-c.25-27.

5.Вишняков Х.И. Улучшение выбиваемости жидкостекольных смесей добавками доменного шлака.//Литейное производство.-1976.-№11.-c.42.

6.Грузман В.М.Улучшение выбиваемости жидкостекольных смесей.//Литейное производство.-1999.-№6.-c.30-31.

7.Дорошенко С.П.,Ващенко К.И.Наливная формовка:Монография.-Киев:Вища школа. Головное изд-во,1980.-176c.

8.Дорошенко С.П.,Макаревич А.П.Состояние и перспективы применения жидкостекольных смесей.//Литейное производство.-1990.-№2.-c.14-15.

9.Климкин А.В.Смеси улучшенной выбиваемости.//Литейное производство.-1990.-№2.-c.25.

10.Лясс А.М.Быстротвердеющие формовочные смеси .-.:Машиностроение,1965.-322c.

11.Лясс А.М.,Валисовский И.В.Пути улучшения выбиваемости смеси с жидким стеклом.//Труды ЦНИИТМАШ.-1960.-№6.-c.81-95.

12.Лясс А.М.,Валисовский И.В.Об улучшении  выбиваемости смесей с жидким стеклом .//Литейное производство.-1961.-№9.-с.15-17.

13.Медведев Я.И.,Валисовский И.В.Технологические испытания формовочных материалов.-2-е издание ,перераб.и доп. -М.:Машиностроение,1973.-298c.

14.Ромашкин В.Н.,Валисовский И.В.Смеси с улучшенными технологическими           свойствами.//Литейное производство.-1990.-№2.-c.17-18.

15.Рыжков И.В.,Толстой В.С.Физико-химические основы формирования свойств смесей с жидким стеклом.-Харьков:Вища школа,1975.-128c.


Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты