Анализ методов улучшения жидкостекольных смесей

   Вторым источником прочности является NaО, образующийся в результате разложения силиката углекислым газом. Освобо­ждающийся NaО взаимодействует с кремневой кислотой и обра­зует силикат.

   Понижение прочности образцов при температурах выше 1000° C Декро и Гогюллон объясняют переходом NaО из рас­плава силиката в зерна кварца, что способствует более быст­рому превращению кварца в кристобалит, но вызывает в то же время постепенное исчезновение связующего вещества между зернами.

   Это явление сопровождается у смесей кварцевого песка с жид­ким стеклом, нагретых до 1300° C, ясно выраженным прекраще­нием спекания, которое может вновь начаться в смесях, нагретых до более высоких температур (свыше 1500° С).

   По-видимому, эти соображения кажутся Декро и Гогюллону недостаточно убедительными, так как они приходят к выводу, что минимум прочности после предварительного нагрева образцов до 1000° C трудно объясним.

   Вышеприведенное показывает противоречия в эксперименталь­ных данных и мнениях различных авторов. Это свидетельствует о том, что в настоящее время еще недостаточно изучены общие закономерности физико-химических процессов, протекающих при нагреве и последующем охлаждении смесей с жидким стеклом. В частности, не предложены гарантийные меры, обеспечивающие легкую выбивку стержней из отливок.


1.2.        Определение выбиваемости

    Противоречия в экспериментальных данных, полученных различными исследователями, объясняются прежде всего несоблюдением постоянства условий экспериментов и не­совершенством применявшихся методов.

    Надо признать, что объективную оценку выбиваемости стерж­ней из отливок дать очень трудно, так как смеси при их разруше­нии подвергаются различным видам нагрузок. Пленки связую­щего материала испытывают при этом одновременное действие скалывающих, изгибающих и растягивающих усилий. Если с этой позиции рассмотреть наиболее распространенные методы выбивки стержней, то общим для них является ударное воздействие на стержень.

   Многие исследователи определяли выбиваемость смесей по прочности стандартных образцов на сжатие, что не может харак­теризовать способность к разрушению под действием ударной нагрузки, хотя определенная зависимость между прочностью на сжатие и выбиваемостью, по-видимому, существует.

   С другой стороны, использование для определения выбивае­мости стержней встряхивающих выбивных решеток, вибрационных машин, пневматических зубил и других аналогичных приспособ­лений неизбежно вносит существенный элемент субъективности, так как трудно определить момент конца выбивки: образование пригарной корки различной толщины значительно затрудняет оценку собственно выбиваемости смесей.

   Наконец, эти методы применяют обычно при изготовлении какой-либо одной, специально выбранной опытной отливки.

   Поэтому полученные результаты могут быть использованы лишь как сравнительные применительно к данным или подобным отливкам и не могут быть перенесены без существенных поправок на другие отливки. Очевидно, разнообразие конфигураций, веса, типа сплава отливок и, соответственно, условий прогрева стержней настолько велико, что практически невозможно найти такую форму и размеры опытной отливки, чтобы полученные законо­мерности могли быть перенесены на большую номенклатуру литья.

   Поэтому, прежде всего, было обращено внимание на выбор ме­тодики исследований, лишенной упомянутых основных недо­статков. В основу методики[11,13] была положена оценка смесей по наиболее близкому к производственным условиям показателю — работе, затрачиваемой на выбивку («пробивку») образцов, предва­рительно нагретых до различных, заданных условиями опыта, температур.

   Для этого применялся копер, снабженный специальными при­способлениями (рис. 1).

Рис. 1. Приспособления для оценки выбиваемости смесей:

а — исследуемый образец; б — металлическая гильза; в — поддон;

г — боек.

   На нижнем конце вертикального штока копра укреплялся боек диаметром 20 мм. При изготовлении бойка его острие дела­лось тупым, чтобы при длительном использовании сохранить стабильными размеры бойка. Для того чтобы обеспечить возмож­ность выхода разрушенной смеси из-под бойка, последний имел три продольных паза шириной 5 мм, расположенных по окруж­ности под углом 120°. Приспособление для определения работы выбиваемости имело комплект съемных грузов и кулачков, обес­печивающих возможность изменения высоты падения грузов. Таким образом, изменением веса падающего груза и высоты паде­ния последнего достаточно быстро и точно определяли работу, затрачиваемую на выбивку как очень слабых, так и прочных стержневых смесей.

  Образцы высотой 30 мм и диаметром 50 мм, уплотненные тремя ударами на обычном копре, высушивались при 200° C в течение 20 мин или продувались углекислым газом в течение 45 сек. Затем они подвергались нагреву до различных заданных температур от 200 до 1400° C с интервалом 100—200° C, выдержи­вались при этой температуре в течение 40 мин и медленно охла­ждались в печи со скоростью 200—300°/ч.

   Полученные образцы а (рис. 1) плотно, без зазора, встав­лялись в металлическую гильзу б, которая, в свою очередь, устанавливалась на поддон в.  В дне поддона имелось отверстие диаметром 22 мм для свободного выхода бойка г, пробивающего образец а,

   Работа, затраченная на выбивку («пробивку» образца), на­ходилась из следующей зависимости:

A = nGh

где A работа, затраченная на пробивку опытного образца, в кГм;

n число ударов бойка, необходимых для пробивки образца;

G вес падающего груза в кг;

h — высота падения груза в м.


1.3.Изменение работы выбивки смеси в зависимости от температуры нагрева


 По описанной методике образцы смесей при их нагреве и охла­ждении не испытывают сжимающих усилий, возникающих в стерж­нях при усадке отливок.

   Поэтому в работе параллельно с испытанием образ­цов, подвергавшихся нагреву в печах, определяли выбиваемости смесей на опытных отливках плиты длиной 650 мм, шириной 200 мм и высотой 50 мм, в которую одновременно устанавливали четыре стержня из испытуемой смеси. В результате контрольных опытов были выбраны диаметры стержней с таким расчетом, чтобы отношение толщины стенки отливки к радиусу стержня составляло 0,5; 1,0; 2,0 и 4.0.

  Опытные отливки весом 150 кг зали­вались при температуре 1550— 1580° C   сталью 30Л. Температура нагрева стержней при разных соот­ношениях толщин стенок отливок к радиусам стер­ней приведена на рис. 2. Работа, затрачиваемая на выбивку стержней из от­ливок, определялась пос­ле полного их остывания с помощью переносного копра, аналогичного описанному выше.

    Так как пленки склеивающие зерна напол­нителя в случае продува­ния смесей углекислым газом  и  в  случае удаления влаги при нагреве отличаются,  то 

поэтому при изучении общих закономерностей условий выбивки стержней опыты проводились с образцами, продутыми углекис­лым газом в течение 45 сек, и с образцами, высушенными при 200º C в течение 20 мин. Смесь содержала кварцевый песок Люберецкого месторождения (1К025А)—100 весовых частей; жидкое стекло (модуль 2,7, удельный вес 1,48 г/см3)— 5 весо­вых частей; NaOH (10 %-ный раствор)—1 весовая часть.

   Была установлена непосредственная зависимость работы A, затрачиваемой на выбивку образцов, от температуры их предва­рительного нагрева (рис. 3).

   Как видно из этой зависимости, кривая, характеризующая работу выбивки A, имеет два максимума и два минимума.

   Первый максимум соответствует исходному состоянию образ­цов, нагретых до 200º C и охлажденных, а также продутых CO. При последующем нагреве и охлаждении образцов работа, за­трачиваемая на их выбивку, непрерывно падает, достигая мини­мальных значений («первый минимум») в интервале 400—600° С.

   Нагрев до более высоких температур вызывает новый значи­тельный рост работы, затрачиваемой на выбивку, которая дости­гает максимальных значений при 800° C («второй максимум»).

   Из приведенных на   рис. 3 зависимостей видно также, что работа, затрачиваемая   на выбивку образцов, продутых CO, при всех температурах их пред­варительного нагрева оказа­лась ниже работы, затраченной на выбивку высушенных образ­цов.

    Однако, если при первом максимуме  работы  разница весьма существенна, то при втором максимуме эта разница значительно уменьшается, а при обоих минимумах величина A практически одинакова. Это сви­детельствует о том, что при на­греве до высоких температур и охлаждении опытных образ­цов в смеси происходят одина­ковые или подобные процессы. На этом явлении подробно остановимся.

    Наличие минимума работы, затрачиваемой на выбивку образ­цов, предварительно нагретых до температур, лежащих в интер­вале 400—600° C, приводит к мысли о возможности создания в стержнях условий, при которых связь между отдельными зернами наполнителя нарушалась бы после заполнения литейной формы жидким металлом и образования на отливке твердой корки и не восстанавливалась бы в процессе последующего охлаждения стержней. Для достижения этой цели могут быть использованы два пути.

  Первый заключается в регулировании степени прогрева стержней с использованием для этого различных теплопровод­ных и теплоизоляционных смесей; второй — в значительном расширении благоприятного для выбивки интервала температур.

   На практике приходится сталкиваться с очень большим диа­пазоном температур прогрева стержней — от минимальной в центре до максимальной (близкой к температуре заливаемого металла) — на поверхности. Однако для успешной выбивки стержня часто оказывается достаточно иметь легкую выбиваемость его основного объема, тогда наружная часть, соприкасающаяся с отливкой, довольно легко может быть удалена. Об этом свидетельствует, например, опыт применения оболочковых стержней из смеси с жидким стеклом, как правило не вызывающих затруднений при выбивке из отливок.

   Была проверена возможность регулирования степени прогрева стержней с помощью материалов с различными теплофизическими свойствами. Однако введение в смеси с жидким стеклом 20% чугунной стружки  , 10% окалины, применение в качестве наполнителя хромомагнезита  и других  высокотеплопроводных материалов, введение в смеси

Рис.4.   Влияние толщины стенки отливки на условия нагрева стержней из смесей с жидким стеклом:

 1— хромомагнезитовой; 2 — кварцевого песка и 10% асбеста;

 3 — кварцевого песка и 20% чугунной стружки.

материалов (асбеста), тормозящих отвод тепла, не позволило существенно изменить температуру в центре стержней (рис. 4).

   Для решения второй задачи необходимо было установить причины, определяющие зависимость работы, затрачиваемой на выбивку стержней, от температуры их предварительного нагрева.

   Существенное различие работы, затраченной на выбивку высушенных образцов (рис. 3) в области первого максимума (исходное состояние), объясняется разли­чием природы пленок, связывающих зерна кварцевого песка. Небольшое увеличение прочности образцов, продутых углекислым газом и нагретых до 200° C, закономерно и объясняется краткой продолжительностью (45 сек) продувки образцов углекислым газом.

   При последующем нагреве образцов до температур 400–600° C наблюдается значительное уменьшение работы, затрачивае­мой на выбивку образцов.

   Важно отметить, что величина работы в этом интервале тем­ператур является минимальной и практически одинаковой как для образцов, предварительно высушенных, так и для образцов продутых CO. Пленка жидкого стекла обладает чрезвычайно высокой адгезией к кварцевым зернам. Это особенно сильно проявляется в условиях высоких температур, когда происходит химическое взаимодействие между щелочным силикатом натрия и поверхностью кварцевых зерен.

  Учитывая когезионный тип разрушения смесей с жидким стеклом, изменение прочностных свойств смесей в условиях их нагрева и последующего охлаждения можно объяснить измене­ниями, происходящими в пленке жидкого стекла.

   Вследствие различных температурных коэффициентов объем­ного и линейного расширения стекловидного силиката натрия и кварцевого песка при повторном нагреве и охлаждении высушен­ных образцов в пленке, склеившей зерна наполнителя, возникают напряжения, приводящие к образованию трещин, нарушающих её сплошность и снижающих прочность образцов на удар.

   При нагреве образцов до 600° C и последующем охлаждении к напряжениям, возникающим вследствие различия температур­ных коэффициентов расширения пленки и зерна, добавляются напряжения, возникающие в результате модификации изменений кварца (переход α-кварца в β-кварц при 575° С).

   Снижение величины A и образование первого минимума объясняется также полной потерей влаги гелем кремневой кислоты и дисиликатом натрия в интервале температур примерно до 350–400° С.

   Эти данные подтверждаются термограммами высушенных при: 200° C и продутых углекислым газом смесей, содержащих 6% жидкого стекла.

   Здесь, однако, имеется в виду влияние не собственно потери влаги, а воздействия этого процесса на возникновение в пленке, связывающей зерна кварца, напряжении, приводящих к обра­зованию в ней трещин, резко снижающих общую прочность смеси.

   Наконец, следует учесть, что напряжения в пленках будут тем выше, чем больше будет перепад между температурой нагрева и температурой последующего охлаждения. Влияние этих фак­торов на условия выбивки стержней и подтверждение превали­рующего значения напряжений, возникающих в пленках и при­водящих к падению величины A, находим экспериментально. Полученные данные (рис. 5) ясно показывают, что при повторном нагреве и охлаждении прочность образцов резко падает.

    Очевидно, что стекловидная пленка, содержащая в основном гидратированный   дисиликат натрия, будет значительно более хрупкой, чем пленка, состоя­щая в основном из геля крем­невой   кислоты.  Последняя, особенно в начальных условиях, будет обладать эластичностью и способностью частично релаксировать возникающие  нап­ряжения. Поэтому прочность предварительно высушенных об­разцов при повторном нагреве и охлаждении падает гораздо более резко, чем у образцов, предварительно продутых угле­кислым газом.

   Таким образом, в случае высушенных и в случае проду­тых CO образцов при их наг­реве до 400–600° C и последую­щем охлаждении в результате возникающих напряжений, при­водящих к образованию в плен­ках трещин, работа, затрачивае­мая на выбивку, оказывается минимальной.

    Переходя к рассмотрению одного из главных вопросов – причин образования второго максимума, прежде всего следует отметить чрезвычайно быстрое увеличение работы, затрачиваемой на выбивку образцов, предварительно нагретых до 800° С. Столь резкое возрастание прочности при нагреве образцов до 800° С свидетельствует о том, что примерно при этой температуре про­исходит коренное изменение условий склеивания кварцевых зёрен наполнителя.

Причина образования второго максимума становится очевид­ной из рассмотрения двойной диаграммы состояния NaO – SiO (рис.6)                                  

   При нагреве жидкого стекла, обычно применяемых модулей, жидкая фаза начинает появляться при температуре 795° C, а при нагреве до 850° C (для модуля, равного 2,5) образуется полностью жидкий расплав.

  Образовавшаяся жидкая фаза силикатного расплава обволакивает зерна кварцевого песка, «залечивает» появившиеся ранее трещины и при последующем охлаждении сооб­щает смеси высокую прочность, что приводит к значительному увеличению работы, затрачиваемой на выбивку смесей. Этот процесс происходит как в высушенных, так и продутых CO образцах. Однако, если в высушенных смесях происходит простое расплавление уже ранее образовавшегося силиката натрия, то в смесях продутых CO образуется расплав из самостоятельно существующих компонентов — главным образом NaHCO и SiO, получившихся в результате разложения жидкого стекла при про­дувании смеси углекислым газом. Это, по-видимому, является причиной меньшей величины второго максимума в образцах, продутых CO,  так как условия образования расплава из отдель­ных составляющих в тонкой пленке связующего не могут считаться благоприятными. Подтверждением такого предположения яв­ляются опыты (рис. 7), проведенные при заливке стержней сталью 30Л. Они подтвердили общую



Рис. 6. Диаграмма состояния системы NaO – SiO.

закономерность — ярко выраженный максимум работы, затраченной на выбивку стерж­ней, прогретых до температуры примерно 800°С.

Рис. 7.Работа,  затраченная   на выбивку  из отливок стержней:

    1—высушенных при 200° C;

    2 — продутых CO.

 Вследствие значитель­ного воздействия на стер­жень тепла залитого ме­талла, малой теплопровод­ности смеси и очень мед­ленного охлаждения стер­жней процессы образова­ния жидкой фазы в плен­ках связующего материала в данном случае протекают более полно, чем при испы­таниях образцов. Поэтому в смесях, продутых CO, при этом полностью осуще­ствляется процесс образо­вания жидкой фазы, вслед­ствие чего наблюдается почти одинаковый ход кри­вых, характеризующих работу, затраченную на выбивку стер­жней, высушенных и продутых CO.

  Таким образом, при нагреве смесей до 800°C образуется жид­кий расплав, который энергично взаимодействует с кварцевым песком, растворяя последний, в результате чего четко выражен­ная граница раздела пленки и зерна стирается и образуется сплошной монолит, обладающий большой прочностью. В этих условиях появляется «второй максимум», резко затрудняющий выбивку стержней из отливок.

   Рассмотрим причины снижения величины A при нагреве смесей до более высоких температур и условия образования «второго минимума».

   При нагреве смесей до температур, превышающих 800° C, взаимодействие силикатного расплава с кремнеземом песка усили­вается. Как известно, скорость диффузии возрастает по мере по­вышения температуры и уменьшения вязкости среды. Поэтому при высоких температурах диффузия SiO от поверхности растворения в расплав значительно возрастает и в целом процесс растворения кремнезема в силикатном расплаве ускоряется. В результате растворения содержание SiO   в расплаве непрерывно увеличи­вается вплоть до предела растворимости при данной температуре согласно диаграмме состояния NaO–SiO. После достижения предела растворимости этот процесс прекращается.

    При охлаждении образца из образовавшегося расплава начи­нают выпадать избыточные кристаллы сначала тридимита, а при температурах ниже 870° C — кварца. Выпавшие твердые кри­сталлы в затвердевшем расплаве играют роль инородных включе­ний — надрезов, нарушающих сплошность пленок и концентри­рующих напряжения, возникающие при охлаждении образца до комнатной температуры.

   Наконец, следует учесть, что чем энергичнее идет процесс растворения SiO в расплаве, тем меньше становится относитель­ное содержание в нем  NaO.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты