Анализ методов улучшения жидкостекольных смесей

6—10% Аl20з. По гранулометрическому составу они незначи­тельно отличаются от кварцевых песков (~60% составляют зерна размером до 2, 5 мм, около 20% — 2, 5—5 мм), что не вы­зывает затруднений при приготовлении смесей. Установлено, что применение шлаков в состоянии поставки с влажностью 20—25% невозможно в связи с резким ухудшением свойств смесей. Использование высушенных шлаков из-за их высокой гидравлической активности приводит к снижению пластичности и живучести смесей. Оптимальные свойства смесей достигают­ся при введении в их состав доменных шлаков влажностью 8—10% и размером зерен не более 7 мм.


   Введение в смеси 10% шлака не приводит к изменению их прочности после тепловой обработки при 200°С, при 15 и 20% шлака прочность смесей незначительно уменьшается, но оста­ется достаточно высокой (соответственно 11, 0 и 9, 0 кг/см2). Газопроницаемость смеси увеличивается с 49 до 326 при добав­ке 20% доменного шлака.

  Применение даже 10—15% шлака снижает в 2—5 раз рабо­ту выбивки смесей. Еще в большей степени уменьшается рабо­та выбивки при 20% шлака.

  Смеси с 10 и 15% шлака были использованы для изготовле­ния стержней отливок весом от 0, 5 до 3, 0 т. При этом трудо­емкость выбивки стержней из жидкостекольных смесей с до­менным шлаком и песчано-глинистых смесей практически не отличалась.


1.4.7.Влияние  фосфорита

   Интересные результаты при использовании неорга­нических добавок были получены на Бежицком сталелитейном заводе П. А. Лобановым и Н. М. Козьминым. Они установили, что добавка в смеси фосфорита резко облегчает выбивку стержней (табл. 3). При этом следует учесть опасность насы­щения поверхности отливок избыточным содержанием фосфора.

Таблица 3

Влияние добавки фосфорита на выбиваемость смесей с жидким стеклом.

              Компоненты смесей


           Состав в весовых частях

Луховицкий песок .............................

Тихвинский боксит ...........................

Фосфорит ...........................................

Жидкое стекло ...................................

Мазут ..................................................

Вода ....................................................


100,0

   ─

   ─

  6,5

  0,5

  1,0


   100,0

     3,5  

      ─

     6,5

     0,5

    1,0


 100,0

     ─

   1,0

   6,5

   0,5

   1,0


 100,0

    ─

   3,0

   6,5

   0,5

   1,0


Число ударов копра до разрушения

образцов .............................................


 

   35


   

    8


   

     3


    

     2



1.5.Влияние органических добавок

   В первом разделе главы было показано, что многие исследователи рекомендуют введение в смеси органических добавок, которые при выгорании должны разрывать пленку связующего материала и тем самым облегчать выбивку стержней. Такое утверждение в ка­честве общего принципа не может быть принято.

   Выгорание органических связующих добавок происходит, как правило, при температурах более низких, чем 800° C, а при 800° C начинается образование жидкой фазы силикатов. Поэтому, если прорывы пленок вследствие выгорания органических добавок имели место, то они исчезнут, как только произойдет расплавление силикатов и образование жидкой фазы[10,11].

   Поэтому никакие органические выгорающие добавки не могут изменить температуру образования второго максимума и введение таких добавок с целью расширения благоприятного для выбивки интервала температур (первого минимума) является бесполезным. Это полностью подтверждается экспериментальными данными, полученными при введении в смеси с жидким стеклом многих органических добавок, в том числе часто рекомендованных в нашей стране и за рубежом — раствора битума в уайт-спирите (рис. 18, а), мочевины (рис. 18, б), древесной муки (рис. 18, в), древесного пека, сахара и др.

   При всех испытаниях органических добавок температура обра­зования второго максимума 800° C оставалась неизменной. Это, однако, не означает, что введение органических добавок для облег­чения выбивки стержней во всех случаях является бесполезным.

   Прежде всего при низких температурах прогрева стержней до 400º C введение органических добавок может содействовать прорыву пленок и снижению работы, затрачиваемой на выбивку стержней. При высоких температурах, превышающих   800°C, в условиях недостатка кислорода может происходить неполное сгорание органических добавок, в результате чего между силикат­ной пленкой связующего вещества и зерном наполнителя обра­зуется инертная прослойка сажистого углерода.

   Известно, что инертные прослойки снижают адгезию пленок и уменьшают прочность смесей. Поэтому введение таких добавок может уменьшить абсолютное значение величины A, при температуре образования второго максимума или близких к ней.


 Положительные результаты могут быть достигнуты лишь в том случае, если органическая добавка будет расположена на поверхности зерен наполнителя под силикатной пленкой.

   Поэтому при выборе органических добавок следует отдавать предпочтение порошкообразным (рис. 18, в), которые предвари­тельно (перед добавкой жидкого стекла) необходимо смешивать с наполнителем.

 Растворы в уайт-спирите добавок типа битума имеют меньшее поверхностное натяжение, чем водный раствор силиката натрия. Если поэтому их вводить в смеси после жидкого стекла, то они не будут достаточно эффективны. Если же их ввести в смесь до жидкого стекла, то при перемешивании вязкость последнего очень быстро возрастает, что будет препятствовать вытеснению раствора битума на поверхность водного раствора силиката натрия. Бла­годаря этому положительное влияние добавки битума сохранится, хотя оно окажется менее эффективным, чем при применении по­рошкообразных органических до­бавок (рис. 18, а).

   Наименьший эффект будет по­лучен при использовании водных растворов, например, мочевины (рис. 18, б).

 

1.6.Влияние хрупкой усадки

   Результаты опытов (рис. 19) на отливках при разном отноше­нии толщины стенок отливки к радиусу стержней показали, что второй максимум образуется примерно при 800° C, а те же смеси с добавкой 3% глины не достигли второго максимума даже при 1150° C(). Ана­логичные результаты были получены при введении в сме­си химически чистого AlO ,MgO, мела и боксита[10,11].

Рис.19.Работа, затраченная на выбивку из отливок  стержней, продутых CO и  изготовлен-ных из смесей:

1 — кварцевого песка с 4% жидкого стекла;

2—кварцевого песка с 3% глины и 4%   жид­кого стекла.


 

  Сопоставляя  результаты испытаний образцов, не под­вергавшихся действию жид­кого металла, и образцов, за­ливавшихся металлом, можно заметить, что работа, затра­чиваемая на выбивку стерж­ней при температуре их на­грева, соответствующей вто­рому максимуму или близкой к ней, в последнем случае в нес­колько раз выше, чем в первом. Основная причина этого заклю­чается в том, что стержни, установленные в литейной форме, подвергаются не только на­греву, но и действию сил сжатия, проявляющихся при усадке отливок в процессе их остывания.


   Чем  тоньше   зерновое строение наполнителя или специальной добавки, тем выше величина работы, зат­рачиваемой на выбивку стер­жней. С другой стороны, для более активного химического взаимодействия веществ их целесообразно применять в тонкоразмолотом виде.

   Таким образом, специаль­ные добавки, вводимые в смесь в  тонкоизмельченном со­стоянии, обеспечивают значи­тельное расширение темпера­турного интервала первого максимума, но в зажимаемых местах стержней, прогревающихся до температуры второго максимума или близких к ней, величина работы, затрачиваемой на выбивку, остается значительной. Для снижения работы выбивки необходимо принимать дополнительные меры, к которым относится, например, обеспече­ние «хрупкой» усадки стержней при их охлаждении. Это может быть достигнуто принуди­тельным охлаждением стер­жней воздухом или водой, ускоренной выбивкой отли­вок из форм, применением оболочковых   стержней, двухслойных стержней с облегченной сердцевиной и др.


1.7.Влияние ускоренного охлаждения


   Эффективность ускорен­ного охлаждения стержней видна из опытов, проведен­ных со смесью, содержав­шей кварцевый песок, 5% жидкого стекла и 1 % NaOH[10].


 Опыты (рис. 20) показа­ли, что путем увеличения скорости охлаждения обра­зцов,







предварительно наг­ретых до температуры обра­зования второго максиму­ма (800° С), можно при­мерно в 3 раза сократить величину А. Аналогичные результаты были получены при увеличении скорости охлаждения стержней, за­литых металлом.

Здесь также трудоемкость вы­бивки стержней из отливок при применении методов ускоренного охлаждения сократилась примерно в 3 раза (рис. 21). Это подт­верждает представления о когезионном типе разру­шения смесей и влиянии на прочность стержней напря­жений, возникающих в пле­нках при их охлаждении.









1.8.Влияние количества жидкого стекла

Из расчетов прочности смесей, известно, что при данном наполнителе и данном связующем материале в случае когезионного типа разрушения прочность смеси


 

Рис. 22. Работа, затраченная на

выбивку стержней, высушенных    при 200°C из стальных отливок:        

     1 — смесь с 8% жидкого стекла;

     2—   то же с 6%; 3 — то же с 4%.





будет непосред­ственно зависеть от количества введенного в нее связующего мате­риала. Следовательно, чем больше жидкого стекла будет введено в смесь, тем труднее окажется выбивка стержней из отливок(рис.22).

    Поэтому одним из действен­ных средств облегчения выбивки является максимальное (допусти­мое по другим технологическим показателям) снижение количества жидкого стекла в смеси.


1.9.Влияние модуля жидкого стекла

 

    Изменение модуля стекла в пределах от 2.0 до 3.0 при незначительном изменении содержа­ния NaO в пределах 11,8—12.1 до 14,2—14,6% (ГОСТ 8264—56) мало влияет на условия вы­бивки стержней[11].

   Существенное повышение модуля до 3,5 благоприятно сказывается на улучшении выбивки, но одновременно заметно ухудшаются техноло­гические свойства смесей — пластичность, дли­тельность  сохранения  физико-механических свойств, что значительно затрудняет использо­вание смесей в производстве[6]. Поэтому более целесообразной является работа на жидком сте­кле низкого модуля (в пределах, предусмотрен­ных ГОСТ 8264—56) с одновременным приня­тием мер для облегчения выбивки стержней в соответствии с приведенными выше положения­ми.





















 

 

 

 

 

2.Улучшение выбиваемости жидкостекольных наливных самотвердеющих смесей













2.1.Изменение прочности НСС в зависимости

 от температуры нагрева


Одним из недостатков жидкостекольных НСС, тормозящих их более широкое применение в литейных цехах, является плохая выбиваемость из отливок. Причина последней – образование при 600-800ºC легкоплавких силикатов, которые при охлаждении приводят к спеканию смеси и резкому повышению её прочности.

Для улучшения выбиваемости в смеси рекомендуют вводить различные добавки, однако надёжных критериев выбора этих добавок практически нет. Органические добавки чаще всего рекомендуют для улучшения выбиваемости смесей из чугунных отливок, а неорганических из стальных.

Для улучшения выбиваемости жидкостекольных НСС пытались вводить в них те же вещества, что и для улучшения выбиваемости обычных пластичных жидкостекольных смесей (уголь, графит, кокс, мазут, опилки, глину, мел, пульвербакелит и др.). Однако практика показала, что многие из этих веществ снижают текучесть, устойчивость пены и прочность НСС, а также ухудшают другие свойства НСС.

Таблица 4


Составы формовочных смесей, применяемых для исследования выбиваемости

 

 

 

Смесь

 

 

 

Состав, мас. ч.

Кварцевый песок

 

 

 

Феррохромо-

вый шлак

Жидкое стекло

 

Бентонит

 

Вода

 

ДС - РАС

Пластичная жидкостекольная

Пластичная самотвердеющая

НСС

Песчано-глинистая

100

95

95

100

 

 

5

5

6

6

6

10

2

2

2

8

0,07


В связи с этим изучена прочность смесей после нагревания и охлаждения[7]. Их состав приведён в табл. 4. Исследования  показали, что при заливке чугуном технологи­ческих проб максимальная температура прогрева НСС в центре об­разца, т. е. на глубине 25 мм равна 800°C, а при заливке сталью – 1200°C. Поэтому добавки, снижающие прочность НСС после нагрева до 800°C, считались эффективными для чугунного литья, а после про­грева до 1200°C – для стального.

Выбиваемость НСС и пластичной самотвердеющей смеси (см. табл. 4), вследствие наличия в них шлака, значительно лучше, чем обычной жидкостекольной. Несколько лучшая выбиваемость НСС по сравнению с пластичными самотвердеющими смесями обусловлена большей по­ристостью НСС. Однако выбиваемость ее, особенно при нагреве свыше 700°C, хуже, чем у песчано-глинистых    смесей.

Рис.23.Влияние температуры прогрева на прочность при сжатии различных смесей:

1-самотвердеющей; 2-обычной жидкост-

кольной; 3-НСС; 4-песчано-глинистой.

Кривая прочности обычной жидкостекольной смеси (см. рис. 23, кривая 2) имеет два максимума и два минимума. Такие же данные получены исследователями ЦНИИТМаша. Кривые прочности плас­тичной жидкостекольной самотвердеющей смеси (кривая 1) и НСС (кривая 3) имеют три характерных участка: резкое снижение прочности при нагреве до 200°C, небольшое изменение при 200–600°C; значи­тельное повышение при 600–1000°C и еще более высокое –при тем­пературе выше 1000° С.

Снижение прочности смесей при нагреве до 200°C объясняется ис­парением воды гелем, а также различными коэффициентами терми­ческого расширения кварцевого песка и геля кремневой кислоты. В табл. 5 приведены результаты изменений объема жидкостекольно-шлаковой композиции и НСС при нагреве их до 600° С.

                           Таблица 5

Изменение объема композиции и НСС в зависимости от температуры нагрева

Смесь

Расширение (+) и усадка (–). % при температуре, °С

  100

        200

     300

   400

    500

   600


Жидкостекольно-шлаковая композиция

НСС




+0,08

+0,08



  –4,40

  +0,20

   



   –4,60

   +0,40



  –4,50

 + 0,75



   –4,40

   + 1,05



  –4,20

 + 1.55


В результате нагрева в пленке композиции, скрепляющей зерна наполнителя, возникают внутренние напряжения, приводящие к об­разованию трещин и частичному отрыву пленки композиции от зерна песка. Поэтому сушка стержней или форм из НСС, выдер­жанных после изготовления более 2 ч, уменьшает их прочность. Осо­бенно сильно снижается прочность, если стержни и формы из НСС вы­держаны до сушки сутки и более.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты