Мониторинг геофизических процессов - (реферат)
p>Линии равных значений силы землетрясения называются изосейстами, а зона, окружающая эпицентр и ограниченная изосейстой максимального значения, называется плейстосейстовой областью. Форма этой области целиком определяется геологическими условиями района эпицентра. Обычно форма плейстосейстовой области в горных районах простирается вдоль основного простирания горной цепи, хотя и бывают исключения из этого правила.

Для энергетической классификации землетрясений на практике пользуются его магнитудой (М или m). Под магнитудой (иногда неправильно называемой интенсивностью землетрясения по шкале Рихтера) понимается логарифм отношения максимального смещения земной поверхности в волне данного типа или максимальной скорости смещения к аналогичной величине для землетрясения, магнитуда которого условно принята равной нулю. Классификация землетрясений по магнитуде введена в 1935 г. американским сейсмологом Ч. Рихтером применительно к территории Калифорнии. В начале 40-х годов она применена Б. Гутенбергом и Рихтером для энергетической классификации землетрясений всего мира. Для расчета М используется эмпирический закон изменения максимальной амплитуды сейсмической волны (А) или скорости колебаний (А/Т) с эпицентральным расстоянием (D), т. е. расстоянием до эпицентра землетрясения - это так называемая калибровочная функцияs(D): М = lgA+sA(D) или М = lg(A/T)+sA/T(D), где Т - период волны. Максимально известное значение Мприближается к 9, 0. За год на земном шаре в среднем происходит по одному землетрясению сМ і8, 0 ; десять землетрясений с М=7, 0-7, 9; 100 - с М=6, 0-6, 9; 1000 - с М=5, 0-5, 9; 10000 - с М=4, 0-4, 9. На территории СНГ магнитуда, например Камчатского-1952 землетрясения составила 8, 5, Кеминского-1911 - 8, 2, Ашхабадского-1948 - 7, 3, Газлинского-1984 - 7, 2, Спитакского-1986 - 6, 9, Дагестанского-1970 - 6, 6, Андижанского-1902 6, 4, Ленинаканского-1926 - 5, 7, Ташкентского-1966 - 5, 1, Эстонского-1976 4, 3.

Для перехода от магнитуды землетрясения к энергии (Е) сейсмических волн обычно пользуются соотношением: lgE = 11, 8 + 1, 5ЧM. В пределах бывшего СССР для классификации землетрясений на близких расстояниях широко применяют шкалу энергетических классов (К). В большинстве случаев под классом понимается логарифм энергии (в Дж) сейсмических волн, прошедших через окружающую очаг землетрясения референц-сферу радиусом 10 км (в таком понимании класс представляет собой разновидность магнитуды). Значения К определяются с помощью специальной номограммы по сумме амплитуд волн Р и S. Сила землетрясения по ее проявлениях на поверхности Земли обычно оценивается в баллах по 10- или 12-балльной шкале. С 1952 г. в СССР принята 12-балльная сейсмическая шкала, характеристики которой приведены в табл. 5. Шкала интенсивности землетрясений

    Таблица 5
    Балл
    Краткая характеристика (по С. В. Медведеву)
    I
    Колебания почвы отмечаются приборами
    II

Ощущаются в отдельных случаях людьми, находящимися в спокойном состоянии III

    Колебания ощущаются немногими людьми
    IV

Колебания ощущаются многими людьми. Возможно дребезжание стекол V

    Качание висячих предметов. Многие спящие просыпаются
    VI
    Легкие повреждения в зданиях
    VII

Трещины в штукатурке и откалывание отдельных кусков, тонкие трещины в стенах VIII

    Большие трещины в стенах, падение карнизов, дымовых труб
    IX

В некоторых зданиях обвалы - обрушение стен, перекрытий, кровли X

    Обвалы во многих зданиях. Трещины в грунтах шириной до 1 м
    XI

Многочисленные трещины на поверхности Земли, большие обвалы в горах XII

Полное разрушение. Волны на поверхности грунта. Значительные изменения рельефа Сопоставление 12- и 10-балльной шкал

    Таблица 6
    I
    II
    III
    IV
    V
    VI
    VII
    VIII
    IX
    X
    I
    II
    III
    IV
    V
    VI
    VII
    VIII
    IX
    X
    XI
    XII

В табл. 6 приведено соотношение между 12-балльной шкалой Меркалли, принятой в нашей стране, и 10-балльной шкалой Росси-Фореля.

Первоначально шкалы были сугубо описательными, но позже было выявлено, что номер балла коррелируется со скоростью движения грунта, либо с его ускорением или смещением. При сильных землетрясениях максимальные ускорения могут превышать ускорение свободного падения; например 1, 4g во время Газлинского землетрясения (9-10 баллов, 1976). Специальные сейсмические шкалы для горных выработок не разработаны, но ориентировочно можно считать, что землетрясения ощущаются под землей на 1 балл слабее, чем на поверхности. Например, по наблюдениям в скважинах в районе Токио амплитуда колебаний с частотой 10-20 Гц на глубине 3510 м ослабевала на 60 дБ по сравнению с колебаниями у устья скважины.

При изучении поверхностного эффекта землетрясения оконтуривают зоны одинаковой балльности. Разграничивающие их линии называются изосейстами. По скорости спада интенсивности с расстоянием можно оценить глубину очага. Соотношение между макс. интенсивностью землетрясения (Io) и его магнитудой зависит от глубины очага h и в среднем для континентальных зон может быть представлено соотношением:

    Io=1, 5M-3, 51gh+3, 0.

При заданных площади, сроке наблюдений и диапазоне магнитуд число землетрясений является показательной функцией магнитуды, график которой в логарифмическом масштабе известен как график повторяемости и иногда используется для сопоставления уровня сейсмичности разломных зон. Модель реального сейсмического процесса должна учитывать элементы как случайности, так и периодичности, что иногда наблюдается в некоторых районах. Например, для Курило-Камчатской и соседних островных дуг известно, что усиление сейсмичности происходит каждые 5, 5 лет в каждом из блоков всей цепи островных дуг. Наиболее интересную форму эти представления получили в виде теории сейсмических брешей, предложенной для Тихоокеанского сейсмического кольца. Те места, где в ХХ в. не отмечались сильные землетрясения, рассматриваются как наиболее вероятные для возникновения сильных землетрясений в ближайшее время.

Сейсмический процесс характеризуется также группированием землетрясений. Частными случаями группирования являются: рой землетрясений; главное землетрясение с последующими толчками (афтершоками); главное землетрясение с предшествующими толчками (форшоками). Рой землетрясений - это группа (иногда очень многочисленная) мелкофокусных толчков, частота и магнитуда которых в течение определенного срока слабо меняются со временем. Самые сильные толчки распределены внутри роя случайным образом. Афтершоками, число которых может быть очень велико, сопровождаются, как правило, все более или менее сильные землетрясения. Сильнейшие афтершоки могут сопровождаться своими вторичными сериями последующих толчков. Магнитуда сильнейшего афтершока статистически на 1, 2 меньше магнитуды основного толчка. Число последующих толчков быстро убывает с глубиной очага землетрясения (глубокофокусные землетрясения афтершоками практически не сопровождаются). В ограниченных зонах перед сильными землетрясениями возникают предваряющие толчки - форшоки. Их появление на фоне длительного “сейсмического молчания” позволяет своевременно предпринять меры предосторожности.

Для регистрации и изучения землетрясений во многих странах существует сеть станций непрерывного слежения за сейсмическим состоянием Земли (или, как мы теперь называем, станций сейсмического мониторинга и прогнозирования). На станциях размещаются высокоточные приборы - сейсмографы, регистрирующие малейшие колебания земной поверхности, а также комплекс прогностических методов для предсказания землетрясений с помощью различных его “предвестников”. Сейсмограф - это очень древний прибор (из геофизической аппаратуры древнее его только компас). Первый сейсмограф был изготовлен в Китае во II веке нашей эры. Несколько остроумных конструкций было предложено в Западной Европе в XVIII и в начале XIX в. , но действительно эффективные записывающие приборы были изобретены только 50-100 лет назад, а в последние десятилетия они были значительно усовершенствованы.

Сейсмограф представляет собой колебательную систему, предназначенную для измерения и записи сейсмических движений. Колеблющийся элемент должен быть прочно прикреплен к твердому основанию, так чтобы он двигался вместе с грунтом. Обычно этот элемент демпфируется, т. е. амплитуда его колебаний ограничивается и гасится.

Конструкции разных сейсмографов в значительной степени различаются. В одних используется горизонтально подвешенный маятник, в других - обратный маятник, установленный на пружинках вертикально. Период собственных колебаний маятника зависит от его массы, демпфированности, чувствительности подвески и эти параметры могут меняться в широких пределах. Это используется на сейсмостанциях, так как одним и тем же сейсмографом невозможно записать легкий промышленный “сейсмический шум” и сильное землетрясение, при котором очень чувствительный и слабо демпфированный сейсмограф просто “зашкалит”. В записывающем устройстве используются механические, оптические, электромагнитные элементы или их комбинации. Их назначение - передать колебания на бумагу самописца, на магнитную ленту или на магнитный диск компьютера. Амплитуда так называемого “промышленного шума” во много раз ниже, чем амплитуда даже самого слабого землетрясения. Поэтому появление первых же толчков форшоков хорошо заметно на самописце или на дисплее компьютера. Достаточно большое усиление сейсмографов позволяет “разогнать” амплитуду колебаний грунта до визуально заметных величин. Обычная величина усиления в сейсмическом регистрационном канале - десятки-сотни тысяч раз по сравнению с реальной амплитудой колебаний грунта. Хотя возможности увеличения превышают величину 4-5 млн. раз, но “промышленный шум” накладывает ограничение на повышение усиления. Очень важна точная, до долей секунды, регистрация времени; поэтому на сейсмограммах записываются также сигналы времени, передаваемые по радиоканалу из метрологических обсерваторий (Палат точного времени).

В последние годы аппаратура существенно усовершенствовалась в связи с появлением лазерной техники и мощнейших компьютерных комплексов. В областях активной сейсмичности часто устанавливаются лазерные дальномеры на противоположных сторонах крупных разломных зон. Это делается для того, чтобы обнаружить малейший крип или подвижку склонов. Сейсмографы часто группируются, и создаются региональные сети стандартизованных сейсмографов, таких, как созданная под эгидой США и Канады Всемирная сеть стандартных сейсмографов (WWSSN). В шт. Калифорния, подверженном частым землетрясениям, имеется собственная сеть сейсмографов.

Сейсмические морские волны - цунами, иногда ошибочно называемые “приливными” волнами, часто сопровождают крупные землетрясения, происходящие в районах морского или океанического побережья. Они возникают тогда, когда энергия землетрясения передается как морскому дну, так и воде. Волны цунами характеризуются высокой скоростью и большой длиной, однако в открытом море их высота не бывает больше первых метров. С корабля в море редко можно заметить прохождение таких волн. Однако, когда эти волны выходят на мелководье, они могут стать весьма разрушительными. Высота каждой волны достигает там многих метров, потому что длина волны уменьшается из-за близости дна, как и в случае обычных волн. Соответственно энергия воды, имевшей большую глубину, концентрируется в коротком вертикальном интервале. Цунами много раз приносили опустошение прибрежным районам. После Лиссабонского землетрясения 1755 г. высокие волны сначала осушили бухту, потом выплеснулись на берег примерно на километр, а потом смыли в море корабли, дома, мосты и людей, т. е. все, что попадалось на их пути. Цунами, возникшее в районе Алеутских островов, уничтожило 1 апреля 1946 г. маяк на мысе Датч (Аляска), расположенный на 15 м выше уровня моря. Волна проделала путь 3800 км к Гавайским островам со средней скоростью 780 км/ч. В открытом море волны имели длину 150 км. У берега их высота достигала 3-6 м. В узких заливах она вздыбливалась до отметок 10-15 м над уровнем моря. Преобразившись в движущиеся стены воды, эти волны нанесли тяжелые повреждения домам, шоссейным и железным дорогам, мостам, пристаням, волнорезам, судам и были причиной гибели 160 человек. Общий материальный ущерб на Гавайях оценивался в 25 млн. долларов (в ценах 1946 г. ). Волна достигла и берегов Калифорнии, где ее высота составляла до 4 м. После этой трагедии была организована Международная система предупреждения о движении волн цунами, с тем, чтобы сообщать в населенные пункты о грозящей им опасности.

Гигантские морские волны, возникшие у побережья Чили во время землетрясения 1960 г. , достигли Гавайев, пройдя 11000 км приблизительно за 15 часов (скорость - 730 км/час). Мореограф в Хило на Гавайских островах попеременно отмечал подъем и падение уровня воды, происходившее примерно с 30-минутным интервалом. Несмотря на предупреждение, эти волны в Хило и других местах Гавайских островов стали причиной гибели 60 человек и нанесли ущерб в 75 млн. долларов. Еще через 8 ч волны достигли Японии, в очередной раз разрушив там портовые сооружения; при этом погибли 180 человек. Жертвы и разрушения имелись также на Филиппинах, в Нов. Зеландии и в других частях Тихоокеанского кольца.

    Рассмотрим меры защиты от землетрясений.

Когда в густонаселенной местности происходит сильный подземный толчок, многие здания получают повреждения или разваливаются. Главная причина этого - низкое качество построек. Разрушительное воздействие землетрясений связано с неустойчивостью грунта, с использованием сырцового кирпича или непрочной каменной кладки, что приводит к падению крыш и печных труб, растрескиванию фундаментов и стен.

Потенциально опасны тяжелые выступающие части домов, стенки парапетов и ненужные лепные украшения. Старая известка, незакрепленная кровля и стропила, лишенные элементов жесткости лифтовые шахты и каркасы, неукрепленные лестничные колодцы и общие стены смежных домов разного размера - все это также представляет опасность. При дифференцированных движениях рвутся подземные трубопроводы всех видов.

Чтобы свести к минимуму возможные повреждения, строители должны учитывать все геологические факторы, определяющие устойчивость здания. Скальные породы идеальное основание для крупных сооружений. Следует избегать строительства на слабых грунтах, крутых склонах, насыпных землях. Нежелательно также возводить здания на морских утесах, на обрывистых берегах рек, вблизи глубоких котлованов и на участках с высоким уровнем грунтовых вод в рыхлых осадочных породах. При строительстве мостов и высоких зданий необходимо обращать особое внимание на их вес, устойчивость по отношению к горизонтальным силам и на внутреннюю уравновешенность. Доказано, что железобетонные здания сравнительно устойчивы, однако деревянные, стальные и укрепленные каменные дома также могут быть сейсмостойкими, если они хорошо сконструированы и добротно построены. Для этого применяются соответствующие элементы жесткости и крепления: связывающие скобы, подпорки и стойки, анкерные болты. Наиболее безопасной конструкцией является та, которая будет гибкой и сможет двигаться как единое целое, т. е. так, чтобы отдельные ее части не ударялись друг о друга.

Обеспечение сейсмостойкости - обязательное требование при строительстве в сейсмоопасных районах. Необходимое увеличение стоимости составляет, по инженерной оценке, менее 10%, если соответствующие проблемы решаются на стадии проектирования.

Чтобы избежать катастрофических последствий в особо сейсмоопасных районах могут быть приняты некоторые административные меры. Для контроля землепользования и типов построек, разрешенных в зонах высокой сейсмичности, должны быть обязательны ограничения, налагаемые сейсмическим районированием. Это относится, например, к районам с неустойчивыми насыпными грунтами и к районам, где развиты оползни. Строительные нормы и правила должны определять стандарты различных зданий. Учет различного уровня риска в связи с особенностями геологической обстановки, выполняемый с помощью карты сейсмической опасности должен стать обычной практикой строительных и страховых компаний. Все эти меры контроля путем районирования, совершенствования строительных норм и классификации зданий по уязвимости - особенно необходимы для предотвращения человеческих жертв и катастрофических разрушений при будущих подземных толчках в районах сейсмической опасности: по периферии Тихого океана и в Средиземноморском поясе. Серьезная проблема состоит в том, как привести ныне существующие здания в соответствие со стандартами сейсмостойкости; другая проблема - подготовка планов мероприятий по смягчению последствий разрушительных подземных толчков.

Энергетика геолого-геофизических процессов: оценка вклада радиогенной, гравигенной и др. видов энергии в общий энергетический баланс.

Рассмотрим внутриземные процессы, приводящие к выделению, трансформации или поглощению тепловой энергии. К первичным источникам энергии относятся: начальная внутренняя теплота Земли, обусловленная нагреванием при аккреции космических частиц из протопланетного облака, а также их начальным теплосодержанием; изменение потенциальной гравитационной энергии Земли в процессе плотностной дифференциации ее вещества; изменение кинетической энергии вращения Земли, что сопровождается превращением механической энергии в тепловую посредством приливного трения; высвобождение внутриатомной энергии при распаде радиоактивных элементов и поглощении Землей внешнего нейтринного потока. Помимо этих внутриземных источников энергии можно еще отметить энергию солнечного излучения, падающего на земную поверхность. Абсолютная величина этой энергии огромна: она в 10 тыс. раз превышает величину теплового потока из недр, составляя в среднем 340 Вт/м2, или 5, 5·1024Дж/год. Однако 40% этой энергии сразу же отражается от поверхности, остальная часть после ряда преобразований в атмосфере, гидросфере и биосфере преобразуется в более длинноволновое излучение, нагревающее эти геосферы, а затем практически полностью (98%) излучается обратно в космос. Лишь 2% этой энергии расходуется на разрушение коренных пород земной коры и превращение их в осадочные породы, а также накапливается в органическом веществе и в горючих полезных ископаемых. Таким образом, солнечная энергия в очень малой степени сохраняется на земной поверхности и в еще меньшей степени проникает в недра. Однако солнечная радиация определяет температуру поверхности и самого верхнего слоя земной коры, а это граничное условие для любых расчетов температурного состояния литосферы.

Температура земной поверхности периодически меняется, что связано с изменением интенсивности инсоляции. Например, в течение суток происходят суточные колебания температуры, в течение года - сезонные колебания, в течение геологических эпох - климатические колебания. Толщина слоя суточных колебаний составляет 0, 9-1, 2 м, т. е. распространяется только на почвенный слой, а сезонных - достигает 18-40 м. Подошва слоя сезонных колебаний называется "нейтральным слоем", а сам слой, где проявляется влияние солнечной радиации, названгелиотермозоной. Ниже гелиотермозоны располагается геотермозона- это слой, в котором проведены экспериментальные геотермические измерения. На глубинах ниже "нейтрального слоя" температура остается практически постоянной и не зависит от перемен, происходящих на поверхности под влиянием солнечной радиации.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты