Мониторинг геофизических процессов - (реферат)
p>поправка на рельеф окружающей местности, учитывающая притяжение всех форм внешнего рельефа. Эта поправка позволяет привести значение силы тяжести в данной точке к такому, которое было бы, если бы под точкой располагался ровный слой масс без выступов и впадин. Поправка на рельеф всегда уменьшает наблюденное значение силы тяжести независимо от того, находится ли вблизи исследуемой точки возвышенность или впадина. Технически поправка на рельеф рассчитывается путем аппроксимации форм рельефа серией призм или цилиндров, для которых рассчитывается аналитически сила тяжести при заданной плотности. После внесения поправок формируется гравитационная аномалия Буге, которая для суши рассчитывается по формуле:

    Dg = gн-go+gф-gб-gт,

где gн, go, gф, gб, gт, соответственно, наблюденное, абсолютное значения, поправки Фая, Буге и топографическая.

Расчет Dg позволяет сравнивать измерения в разных условиях. Аномалии тесно связаны с распределением плотностей. Положительные аномалии свидетельствуют о приближении к поверхности пород с повышенной по сравнению с окружающими плотностью, а отрицательные - о дефиците массы, т. е. о присутствии пород с пониженной плотностью. Из формул для расчета величины аномалии видно, что количественная интерпретация природы аномалии неоднозначна. Например, одна и та же величина аномалии может быть вызвана как большим контрастом плотности между аномальным телом и вмещающими породами, так и большей мощностью аномального тела при сохранении того же контраста плотности. В связи с этим для решения прикладных задач гравиметрический метод чаще всего комплексируется с другими геофизическими методами.

В любой точки на поверхности или внутри Земли, а также в окружающем ее пространстве действуют магнитные силы. Наша планета представляет собой гигантский магнит, но напряженность поля этого магнита относительно невелика около 0, 01 А/м. Для сравнения можно указать, что искусственное поле электромагнитов достигает напряженности 10-20 А/м, а с помощью сверхпроводников удается достичь напряженности магнитного поля в 1000-2000 А/м. Внешнее магнитное поле Земли по форме силовых линий близко к полю диполя элементарного бесконечно малого магнита. Центр диполя Земли смещен относительно Северного и Южного полюсов, поэтому географические и магнитные полюса не совпадают. Северный магнитный полюс расположен вблизи Южного географического полюса, и наоборот. Ось диполя смещена относительно оси вращения Земли на угол 11о26’, в связи с чем Южный магнитный полюс располагается вблизи Северной Гренландии (74ос. ш. ,100оз. д. ), а Северный - на северо-восточной оконечности Земли Королевы Виктории в Антарктиде (68ою. ш. ,145ов. д. ). Дипольный характер геомагнитного поля определяет еще одну его особенность. Вследствие замкнутого (от одного полюса до другого) характера силовые линии геомагнитного поля образуют систему “магнитных ловушек” для заряженных частиц, появляющихся в верхних слоях атмосферы под действием солнечного излучения. Таким образом возникли окружающие Землю пояса космической радиации, или зоны Ван-Аллена, заполненные ионами атмосферных газов и элементарными частицами. Пояса космической радиации, обнаруженные в 1958 г. советскими учеными С. Н. Верновым и А. Е. Чудаковым и американским ученым Д. Ван-Алленом, играют важную роль в формировании внешнего геомагнитного поля. В частности, они являются проводниками электромагнитных возмущений, возникающих в полярных областях. Одно из таких возмущений - полярные сияния, обусловленные свечением газов в мезосфере, на высоте 80-150 км. Электромагнитные возмущения по поясам Ван-Аллена почти мгновенно (за доли секунды) передаются от одной возбужденной полярной области к другой, чем обусловлены почти синхронные вспышки полярных сияний в Арктике и Антарктике.

Максимальная напряженность геомагнитного поля наблюдается на полюсах (0, 008-0, 009 А/м), а минимальная - на экваторе (0, 005 А/м). С удалением от поверхности Земли напряженность резко убывает (пропорционально кубу расстояния). При этом между постоянным геомагнитным полем и силовым полем межпланетной среды под действием солнечного ветра образуется нестабильная переходная зона.

Магнитное поле является векторным, поэтому его интенсивность характеризуется не только напряженностью, но и положением в пространстве (рис. 12). Во внешнем поле этот векторТ направлен по касательной к магнитной силовой линии L и в вертикальной плоскости может быть разложен на горизонтальную Н и вертикальную z составляющие: . Линия пересечения этой вертикальной плоскости с поверхностью геоида называется магнитным меридианомS, а угол, образуемый им с географическим меридианом N, - углом магнитного склонения D. Угол отклонения вектора от горизонтальной плоскости называется углом магнитного наклоненияI и связан с составляющими вектора простым соотношением tg I = z/H. Распределение интенсивности геомагнитного поля изображают на картах, где равные значения напряженности (T, z , H) образуют изодинамы, равные углы магнитного склонения - изогоны, а равные углы магнитного наклонения - изоклины. Напряженность поля в целом увеличивается по направлению к магнитным полюсам. Около географического экватора проходит изодинама минимальной магнитной напряженности -динамический экватор, в пределах которого вертикальная составляющая z равна нулю. Изоклины изменяются от нуля до 90о. Они имеют тенденцию прослеживаться в широтном направлении подобно параллелям. Нулевая изоклина называется магнитным экватором и проходит в пределах Африки и Азии около 10ос. ш. и в пределах Южной Америки - около 15ою. ш.

    Рис. 12. Элементы магнитного поля Земли
    а - участок поверхности Земли; в - вертикальная плоскость

Изогоны сходятся в магнитных полюсах Земли. По форме они напоминают географические меридианы, а нулевая изогона называетсянулевым магнитным меридианом. Линия нулевого склонения образует петлю в Восточной Сибири и на Дальнем Востоке, где отмечается также максимум напряженности поля. Такие отклонения получили название магнитных аномалий. Их размеры составляют тысячи км, поэтому ясно, что их природа обусловлена особенностями строения Земли в целом. Многолетние наблюдения и измерения составляющих магнитного поля установили его изменчивость во времени. Так, даже в течение суток отмечается периодическое, обычно достаточно правильное изменение параметров геомагнитного поля. Эти изменения обусловлены суточными изменениями положения земной поверхности относительно Солнца и называются суточными вариациями геомагнитного поля. Эти вариации невелики, поэтому они измеряются специальной единицей измерения гаммой (1g = 1, 257Ч10-7 А/м).

Ультрафиолетовое солнечное излучение в течение светового дня оказывает ионизирующее воздействие на слои ионосферы. Перемещения масс ионов в ионосфере, связанные с приливным воздействием и конвекцией воздуха, приводят к появлению здесь электрических токов и локальных магнитных полей, деформирующих основное дипольное поле. Амплитуда вариаций в полярных областях больше, чем на экваторе; в средних широтах в течение суток вертикальная составляющая меняется на 20-30g, а в полярных - до 200-300g, а склонение - на 10-15’. Деформация дипольного поля во время суточных вариаций настолько велика, что приводит даже к смещению положения магнитных полюсов. Величина таких смещений в течение суток достигает 100 км относительно среднего положения магнитного полюса.

Еще большую амплитуду имеют непериодические изменения составляющих магнитного поля, обусловленные вспышками солнечной активности. Изменения в ионосфере, связанные с этими вспышками, приводят к значительным по амплитуде вариациям магнитного поля - до нескольких градусов по склонению и до тысяч гамм по напряженности. Эти непериодические вариации поля часто сопровождаются полярными сияниями, ухудшением или прекращением коротковолновой радиосвязи и называютсямагнитными бурями. Механизм возникновения магнитных бурь, по-видимому, определяется взаимодействием корпускулярного излучения Солнца с магнитным полем в околоземном пространстве. На удалении 100-200 тыс. км от Земли поле настолько ослабевает, что становится соизмеримым по интенсивности с космическим магнитным полем; эта граница называется магнитопаузой, а ограничиваемое ею околоземное пространство - магнитосферой.

Корпускулярное излучение Солнца создает солнечный ветер, являющийся источником космического магнитного поля интенсивностью в несколько гамм. Во время вспышек солнечной активности интенсивность солнечного ветра возрастает; при встрече его с магнитосферой образуется ударная волна, деформирующая магнитные силовые линии. Отклоняясь под действием излучения Солнца, они образуют длинный шлейф, достигающий Луны, а магнитосфера приобретает асимметричную форму. Эти деформации магнитосферы и являются причиной магнитных бурь, т. к. при этом над поверхностью планеты перемещаются значительные массы ионизированного газа. Изменение проводимости слоев ионосферы приводит к ухудшению их отражательной способности по отношению к радиоволнам и общему ухудшению радиосвязи. Продолжительность магнитных бурь может достигать нескольких суток.

Процессы в магнитосфере тесно связаны с еще одним полем Земли - электрическим. По современным данным, у ионов и элементарных частиц ионосферы преобладает положительный заряд. Это приводит к накоплению в литосфере отрицательных зарядов, а перемещения заряженных частиц в ионосфере индуцируют электрические токи в твердой оболочке Земли. В целом ионосфера образует с поверхностью Земли сферический конденсатор, в котором ионосфера обладает положительными, а литосфера отрицательными статическими электрическими зарядами. Роль изолятора выполняют плотные слои атмосферы. Величина заряда этого конденсатора достаточно велика - напряженность электрического поля в нижних слоях атмосферы составляет около 100 В/м, а в грозовую погоду значительно больше.

Природа атмосферно-электрического поля Земли, таким образом, связана с ионизацией верхних слоев атмосферы под действием излучения Солнца. Переменный характер электрическому полю придают мощные всплески солнечной активности при вспышках на поверхности Солнца. Эти относительно кратковременные вспышки создают неоднородную ионизацию в атмосфере Земли на высоте около 100-300 км, а перемещение электрических неоднородностей высотными ветрами приводит к образованию переменного электромагнитного поля в атмосфере и земной коре. Таким образом в литосфере возникают теллурические токи. Электроды, вкопанные в почву и соединенные с амперметром, обычно регистрируют теллурические токи силой около 100 мА, а в периоды возмущений электромагнитного поля до 2, 5 А. Средняя плотность теллурических токов 2 А/км2. Кроме токов, обусловленных состоянием атмосферно-электрического конденсатора, в земной коре локально распространены постоянные и переменные электрические поля, вызванные естественной циркуляцией минерализованных растворов, электрохимическими процессами на поверхностях горных пород и другими факторами.

Теллурические токи обычно обладают значительной изменчивостью, периодичность которой определяется активностью процессов на Солнце и в ионосфере. В течение более продолжительных интервалов времени (десятки, сотни лет) также отмечается изменчивость составляющих магнитного поля Земли. По результатам измерения магнитного склонения и магнитного наклонения в Лондоне и Париже установлено, что за последние 350 лет вариации достигают 30о по склонению и 10опо наклонению. Эти плавные изменения геомагнитного поля по напряженности обычно не превышают десятков гамм и называютсявековыми вариациями. Их изучение в различных участках Земли позволило установить еще одну форму изменчивости геомагнитного поля. Так, выявлено, что его аномалии плавно перемещаются на запад примерно в широтном направлении. Это свойство геомагнитного поля называетсязападным дрейфом. Скорость дрейфа довольно значительная - около 0, 18ов год. При этой скорости наблюдаемое распределение аномалий магнитного поля совершит полный оборот вокруг Земли примерно за 1800 лет.

В отличие от суточных вариаций и магнитных бурь, которые связаны с излучением Солнца, вековые вариации и западный дрейф геомагнитного поля, очевидно, обусловлены глубинным источником, расположенным в недрах Земли. По подсчетам, с внешними источниками, основным из которых является Солнце, связано около 6% полного геомагнитного поля. На долю внутренних источников, природа которых, к сожалению, изучена недостаточно, приходится около 94% измеряемого магнитного поля Земли.

Интенсивность внутреннего источника можно оценить количественно по напряженности создаваемого им поля. Мерой интенсивности может служитьмагнитный момент, эквивалентный силе, которую необходимо приложить к магниту, чтобы удержать его в положении, перпендикулярном к внешнему магнитному полю. По результатам вычислений магнитного момента, проводимых с 1829 года, его значение постепенно уменьшается со средней скоростью около 3, 7Ч10-25 А/м2Чгод, или 0, 04% в год. Если это уменьшение будет продолжаться еще 1200 лет, то геомагнитное поле исчезнет.

Изменчивость магнитного поля Земли - суточные и вековые вариации, западный дрейф - обусловливают необходимость периодического повторения магнитных измерений и обновления магнитных карт, поэтому на картах составляющих геомагнитного поля обычно указан год, которому соответствует показание распределения поля.

Проблема происхождения магнитного поля относится к ряду сложных и до сих пор не решенных. Для объяснения природы земного магнетизма предложен ряд гипотез. Ферромагнитная гипотеза. По расчетам содержание ферромагнетиков в земной коре слишком мало для создания геомагнитного поля. Однако с глубиной содержание тяжелых металлов возрастает, особенно в ядре, которое состоит в основном из ферромагнетиков - железа и никеля. Наличие ферромагнетиков и шарообразная форма ядра являются исходными предпосылками гипотезы постоянного магнита. По этой гипотезе ядро Земли представляет собой намагниченное тело, создающее магнитное поле дипольного характера. Однако предположение о намагниченности ядра не согласуется с данными о его температуре, превышающей здесь 2000оС, что намного больше не только точки Кюри, при которой магнитные свойства полностью исчезают, но и температуры плавления железа и никеля (соответственно, 1535 и 1453оС). Учитывая давление в ядре Земли, можно допустить некоторое повышение точки Кюри, например, для железа до 780оС, но все равно эта температура намного ниже реально существующих температур в ядре. Кроме того, доказано жидкое состояние внешнего ядра, в то время как постоянные магниты в жидком состоянии неизвестны и существование их по теоретическим соображениям невозможно. Ферромагнитная гипотеза не дает ответа на вопросы о том, какие факторы могли намагнитить ядро Земли , чем определяются вековые вариации и изменения полярности геомагнитного поля. Электрические гипотезы. Внешнее ядро, находясь в жидком состоянии, быстрее реагирует на приложенные к нему силы, чем твердые мантия и земная кора. Поэтому вековые вариации магнитного поля связываются в первую очередь именно с электромагнитными эффектами в ядре. Для создания наблюдаемого геомагнитного поля требуется существование электрического тока порядка 109А. Электрический ток может возникнуть в результате термоэлектрического эффекта, т. е. разности температур на “спаях” разнородных металлов. Такая ситуация может возникнуть на границе мантии и ядра, где существуют участки с различной температурой. Однако в этой гипотезе не установлено, достаточна ли сила термоэлектрического тока для образования геомагнитного поля, не объясняется формирование дипольного характера поля и другие его особенности. Более разработана (с участием акад. Я. И. Френкеля) гипотеза динамо, основанная на магнитогидродинамике - электромагнетизме проводящей жидкости. Согласно этой гипотезе в ядре Земли возникают кольцевые электрические токи противоположного направления в результате тепловой конвекции во внешнем ядре. В верхних слоях внешнего ядра в результате трения о подошву мантии скорость конвекции снижается, а в нижних слоях, на границе с субъядром, относительно увеличивается. Эти контрасты в скоростях течений приводят к образованию замкнутых тороидальных электрических полей большой напряженности (около 5 В/м), которые вследствие своей формы не выходят за пределы ядра. Взаимодействие этих полей с конвективными потоками и течениями на поверхности ядра приводит к появлению в ядре кольцевых токов широтного направления и связанных с ними магнитных полей. Однако кориолисова сила вращения Земли приводит к усреднению этих полей и образованию суммарного поля, близкого к дипольному, с осью, приближающейся к оси вращения. Таким образом, наблюдаемое геомагнитное поле является результирующим при сложении двух неравных и противоположно направленных магнитных полей. Вариации конвективных течений являются причинами того, что одно из генерируемых полей доминирует (и определяет полярность геомагнитного поля); вследствие изменения конвективных потоков доминирующее поле (и полярность) может меняться, с чем и связаны инверсии геомагнитного поля. Изменение скоростей течения на поверхности ядра способно вызвать также миграцию полюсов результирующего поля, а общее отставание течения на поверхности ядра от вращения мантии объясняет западный дрейф поля. Приведенный принцип действия одной из моделей МГД-генератора предполагает самовозбуждение в ядре Земли - усиление слабого магнитного поля дипольного характера, необходимого для начала работы динамо. Таким начальным полем, по-видимому, могли служить слабые магнитные поля термоэлектрического происхождения. Гипотеза динамо предполагает тепловую конвекцию во внешнем ядре. Для объяснения причин возникновения и поддержания конвекции в ядре предложены два механизма: радиоактивный распад и выделение энергии, сопровождающее рост субъядра: потенциальной (при гравитационной дифференциации) и скрытой (за счет фазового перехода вещества из жидкого в твердое состояние). Концентрация радиоэлементов в ядре очень низка (в 1000 раз меньше, чем в земной коре), поэтому вклад этого механизма тепловыделения оценивается как подчиненный. Особенности магнитного и электрического (теллурического) полей Земли, а также различие магнитных и электрических свойств пород используется для практических целей - для поисков руд. Скопление руд тяжелых металлов: железа, титана, никеля и др. ферромагнетиков обусловливает повышение уровня магнитного поля и возникновение аномалий. Крупная аномалия сопровождала месторождение железных руд на юге России - Курскую магнитную аномалию (КМА). Обнаружение этой аномалии собственно и привело к открытию месторождения. В пределах КМА магнитная стрелка отклоняется так резко, что ее “северный” конец часто указывает на запад, восток и даже юг, а напряженность магнитного поля достигает 0, 01-0, 03 А/м, что в 2-3 раза выше общей напряженности геомагнитного поля. Протяженность этой аномалии и размеры месторождения железистых кварцитов огромны - она протягивается на 600 км с севера на юг и на 400 км с запада на восток. Однако такие обширные и интенсивные аномалии встречаются очень редко. Чаще приходится иметь дело с локальными и небольшими по амплитуде аномалиями, сопровождающими те или иные месторождения, генетически обусловленные магматическими породами. С помощью магнитной съемки хорошо выделяются кимберлитовые трубки, с которыми связаны месторождения алмазов.

Регистрация электрических полей также помогает выявить месторождения некоторых руд. Например, хорошо выявляются сульфидные залежи, в которых происходят процессы окисления, зоны циркуляции минерализованных вод и др. Геотермия дает важнейшую количественную информацию для понимания и моделирования геодинамических процессов в геосферах и для оценки энергетики геолого-геофизических проявлений - в этом заключается фундаментальные аспекты изучения теплового поля. Но не менее важны и прикладные аспекты геотермических исследований. Они связаны, с одной стороны, с оценкой геотермальных ресурсов для их использования в энергетике, теплоснабжении, коммунальном и сельском хозяйстве, а с другой - с применением геотермического метода поисков и разведки месторождений на континентах и на акваториях в комплексе с другими геолого-геохимико-геофизическими методами.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты