Достоверность передачи сообщений и надежность систем
p align="left">Сигналы обратной связи могут посылаться в составе информационных кадров и специальными служебными кадрами. Они могут содержать информацию о результатах приема отдельного сообщения и их совокупности.

Часто сигналы обратной связи подразделяют на сигналы подтверждения принятых кадров и сигналы запроса на повторение непринятых кадров. Форма представления сигналов обратной связи может быть различна. Широко применяется способ передачи номера последнего правильно принятого сообщения.

Известные системы с РОС могут быть разделены по виду коррекции ошибок на системы с запаздывающей, опережающей или комбинированной коррекцией. При запаздывающей коррекции повторение сообщения идет только после получения сигнала переспроса. При опережающей коррекции ошибок передача каждого сообщения идет до тех пор, пока по обратному каналу не поступит сигнал подтверждения правильного приема. Комбинированная коррекция ошибок предполагает то или иное сочетание запаздывающей и опережающей коррекций в зависимости от условий и вида передачи.

3. Методы обеспечения надежности

Любая система диспетчерской централизации представляет собой комплекс технических средств, обеспечивающих безопасный контроль и управление движением поездов на участке.

Основными составляющими такого комплекса являются: системы электрической централизации на станциях; системы автоблокировки на перегонах между станциями; системы телеуправления-телесигнализации, объединяющие устройства в единую систему управления.

Чаще всего систему ТУ-ТС принято считать собственно системой ДЦ, отождествляя ее с системой управления движением поездов. Поскольку безопасность движения - это главное требование к системе управления, необходимо уточнить с этих позиций требования к системе ДЦ.

Принято считать, что за безопасность движения в комплексе ДЦ отвечают устройства ЭЦ на станциях и автоблокировки на перегонах, поскольку целью их создания являлось обеспечение безопасности. Однако это не совсем так, если система ТУ-ТС может непредусмотренным образом воздействовать на устройства ЭЦ при отказах или действии помех.

При некоторых отказах ЭЦ или АБ система ТУ-ТС должна обеспечивать передачу так называемых ответственных команд управления. Таким образом, трансформация какой-либо команды в ответственную или возникновение ложной команды представляют угрозу безопасности движения и должны исключаться с требуемой вероятностью.

С другой стороны, система ДЦ должна быть не только безопасна, но и безотказна, так как процесс управления движением поездов непрерывен во времени.

В соответствии с ГОСТ 27.002--89 безопасность систем ЖАТ есть свойство системы сохранять исправное, работоспособное и защитное состояния, а безотказность -- свойство сохранять исправное и работоспособное состояния. Таким образом, безопасность как составляющая надежности всегда не меньше безотказности.

Построение безопасной системы возможно на основе следующих концепций или их сочетаний: безотказность (reliability); отказоустойчивость (fault-tolerance); безопасное поведение при отказах (fail-safe). По первым двум стратегиям подразумевают, что система, которая правильно выполняет алгоритм функционирования, является безопасной. Третья стратегия подразумевает перевод системы в защитное состояние при появлении любого отказа, а переход в работоспособное состояние осуществляется только с участием человека.

Для безопасных современных систем ЖАТ чаще всего реализуют сочетание отказоустойчивости с переходом системы после предельной деградации в защитное состояние после очередного отказа.

Под отказоустойчивостью понимается свойство или способность системы продолжать выполнять требуемые функции при возникновении или наличии отказов элементов за счет резервных возможностей. Система обладает отказоустойчивостью, если можно выделить непустой набор элементов, повреждение которых не вызовет отказ системы. Отказоустойчивость базируется в основном на резервировании и может быть функциональной, информационной, временной или структурной в зависимости от используемого вида резерва. Существуют дополнительные мероприятия (рис. 10), позволяющие в различных сочетаниях значительно повысить отказоустойчивость: техническое диагностирование, рекон-фигурация архитектуры системы и восстановление резерва. Схема общего случая взаимодействия указанных мероприятий в процессе функционирования МП СЖАТ приведена на рис. 11.

Рассмотрим подробно каждую из этих мер повышения отказоустойчивости.

Резервирование. Метод использования дополнительных средств и возможностей с целью сохранения работоспособного состояния объекта называют резервированием.

При функциональном резервировании используется способность элементов и узлов выполнять дополнительные функции, а также заданную функцию дополнительными средствами. Эффективность работы объекта в основном и резервном режимах, как правило, существенно отличается.

При временном резервировании используется избыточное время для выполнения заданной функции. В этом случае имеются интервалы времени, на которых отказы аппаратуры не приводят к отказу функционирования системы.

При информационном резервировании используется избыточная информация. К этому виду резервирования относится использование избыточных кодов, что позволяет обнаруживать и даже исправлять ошибки в передаваемой и обрабатываемой информации.

Структурное резервирование является наиболее эффективным средством повышения надежности аппаратуры и предусматривает введение в минимально необходимый вариант системы, элементы которой называются основными, дополнительных элементов, блоков или даже вместо одной системы предусматривается использование нескольких иден-тичных систем. В этом случае резервные элементы выполняют рабочие функции системы при отказе основных элементов.

Следует отметить, что все эти способы резервирования могут быть реализованы аппаратными, программными или аппаратно-программными средствами.

При постоянном резервировании резервные элементы участвуют в функционировании объекта наравне с основными. В этом случае основные и резервные элементы могут иметь общий вход и общий выход, а могут быть и автономными.

В случае резервирования замещением функции основного элемента передаются резервному только после отказа основного. Для обнаружения факта отказа основного элемента и переключения на резервный необходимы контролирующие и переключающие устройства.

При динамическом резервировании происходит изменение структуры объекта в случае возникновения отказа составляющих его элементов. Например, данные будут передаваться не по кратчайшему пути, а по другому возможному, обходному.

Скользящее резервирование -- это резервирование замещением, при котором группа основных элементов объекта резервируется одним или несколькими элементами, каждый из которых может заменить любой отказавший элемент в данной группе.

Наиболее распространенными видами резервирования безопасных систем ЖАТ на основе микроЭВМ (М-ЭВМ) являются дублирование и мажоритарное резервирование (рис. 12). При дублировании структуры системы ЖАТ значительно снижается вероятность появления ложного сигнала логической 1 на выходе системы, но при этом выход из строя любого из структурных элементов (каналов обработки данных) приводит к отказу всей системы. (На рис. 12 СС -- схема сравнения). В системах ДЦ дублирование широко применялось для центральных постов по основной аппаратуре ТУ-ТС.

При мажоритарном резервировании в отличие от дублирования снижается вероятность появления ложных сигналов как логических 1 и 0 при отказах и сбоях резервируемых каналов и элементов. Мажоритарный способ резервирования позволяет легко обнаруживать и индицировать отказы в элементах резервируемых устройств сравнением сигналов неисправного канала с сигналами остальных исправных каналов.

Методы технического диагностирования. Техническое диагностирование предназначено для своевременного обнаружения неисправностей элементов системы, определения места и причины их возникновения. Поиск неисправностей необходим для выявления и замены отказавших элементов системы во избежание отказа всей системы, а также для обеспечения безопасности ее функционирования. Отказы системы автоматики могут возникать в результате ошибок проектирования и физического износа на этапе эксплуатации.

Методы диагностирования можно классифицировать по нескольким признакам (рис. 13).

По способу диагностирования различают тестовое и функциональное диагностирование (соответственно ТД и ФД). Системы ТД предназначены для проверки исправности объекта и поиска неисправностей, нарушающих его работоспособность. Отличительной особенностью ТД является возможность подачи на объект специальных тестовых воздействий. В большинстве случаев объект не применяется по прямому назначению. Если же объект функционирует по назначению, то тестовые воздействия могут быть только такими, которые не влияют на нормальное функционирование системы управления. Системы ФД предназначены для проверки правильности функционирования объекта и обнаружения неисправностей, нарушающих его нормальное функционирование. Системы ФД работают при применении объекта по назначению, когда на объект поступают только рабочие воздействия.

Развитие встроенных систем диагностирования идет по пути создания самотестируемых и самопроверяемых систем. В частности, в самотестируемых системах применяется метод расширяющихся областей, когда относительно небольшое «ядро» объекта считается работоспособным, а уже оно тестирует все остальные части, причем протестированные «присоединяются» к ядру для дальнейшего развития процесса самотестирования. Целесообразно ядро спроектировать самопроверяемым.

Схема является самопроверяемой, если для определенного класса неисправностей она при каждой неисправности, во-первых, формирует на выходе либо правильный сигнал, либо сигнал ошибки на всех допустимых комбинациях входных сигналов, а во-вторых, для нее существует хотя бы одна допустимая комбинациях входных сигналов, которая приводит к появлению на выходе сигнала ошибки.

При функциональном диагностировании перспективным средством повышения контролепригодности цифровых, в том числе микропроцессорных, систем ЖАТ является придание им свойства самопроверяемости.

Реконфигурация. Процесс изменения структуры системы при обнаружении неисправностей или в соответствии с изменением функциональных задач есть реконфигурация.

Реконфигурация системы при обнаружении отказа какого-либо элемента системы (одного или нескольких) проводится по инициативе системы диагностирования и необходима для сохранения максимально возможной при имеющихся отказах эффективности функционирования системы.

Реконфигурация при изменении состава функциональных задач применяется для достижения наибольшей эффективности в каждом из режимов:

решение задачи с высокими требованиями к безотказности, достоверности и безопасности;

решение задачи с повышенной точностью;

распараллеливание задачи для повышения производительности системы;

решение задачи с низкими требованиями к надежности и времени решения.

Восстановление. Применительно к управляющим вычислительным системам восстановление имеет два аспекта. Во-первых, это восстановление резерва, которое осуществляется вручную с использованием вспомогательных технических средств. Во-вторых, это восстановление вычислительного процесса (также встречаются термины «самовосстановление» и «рестарт»), которое выполняется автоматически самой системой.

Восстановление резерва может являться одной из следующих процедур: замена отказавших элементов на исправные; профилактическая замена элементов; ремонт элементов.

Отказавшие элементы заменяют на исправные по результатам функционального диагностирования, т.е. по факту отказа. Тем самым кратность резервирования доводится до первоначальной. В отличие от этого профилактическая замена проводится после истечения срока службы элемента или межремонтного срока. Отличительной особенностью здесь является то, что такая замена выполняется независимо от всех других мероприятий по обеспечению отказоустойчивости. Профилактическая замена позволяет поддерживать некоторое постоянное значение интенсивности отказов элементов. Что касается ремонта элементов, то можно отметить, что здесь эффективно применение средств тестового диагностирования.

Процедура восстановления вычислительного процесса проводится: после обнаружения ошибки функционирования системы; при введении в работу отремонтированного резерва (если резерв нагруженный).

В первом случае средствами технического диагностирования зафиксировано отклонение каких-либо параметров системы от нормы, например несоответствие результатов вычислений различных каналов обработки информации. Сначала необходимо классифицировать ошибку как сбой или катастрофический отказ. Для этого при наличии резерва времени повторяется эта же программа всеми каналами, причем возврат (рестарт) может быть к началу либо программы, либо программного модуля, при выполнении которого был зафиксирован отказ, либо команды программы, осуществлявшейся в момент возникновения ошибки или до нее. Если неисправность проявляется повторно, делается вывод о факте катастрофического отказа и проводится реконфигурация. В противном случае, т.е. при успешном повторном выполнении, предполагается, что имел место сбой и работа системы управления продолжается, а факт сбоя может быть зафиксирован для последующей статистической обработки.

При отсутствии резерва времени на обработку отказов элементов системы обычно имеют дело с маскирующими отказ решающими элементами, например мажоритарными. В таком случае тип ошибки определяется средствами встроенного тестирования отказавшего канала. Если эти средства сигнализируют о катастрофическом отказе, то также выполняется реконфигурация, если же речь идет о сбое -- синхронизация работы каналов, т.е. отставший канал пытается догнать остальные, работающие синхронно. Для этого он инициирует обмен между всеми каналами для выравнивания данных, после чего проводится синхронный старт.

При введении в работу отремонтированного канала процедура восстановления вычислительного процесса аналогична: обмен между каналами для выравнивания исходных данных, синхронный старт.

Оценка отказоустойчивости. Рассмотренные способы создания отказоустойчивых систем требуют количественной оценки эффективности их применения. Для оценки эффективности возможны два подхода. При первом качественно оценивается возможность достижения отказоустойчивости благодаря:

оперативному обнаружению ошибок с одновременной их классификацией (сбой или отказ);

оперативному устранению ошибки, вызванной сбоем или отказом.

Второй заключается в количественной оценке отказоустойчивости: определяется число отказавших элементов, при котором система продолжает функционировать.

Показатель степени отказоустойчивости

где: -- интенсивность отказов элементов системы, которые не приводят к нарушению функционирования системы; -- интенсивность отказов системы (интенсивность отказов элементов, приводящих к нарушению функционирования системы).

Показатель эффективности введения мероприятий по отказоустойчивости

где: Точ -- время наработки на отказ системы, обладающей отказоустойчивостью; То -- время наработки на отказ системы, не обладающей отказоустойчивостью.

Безопасность МП систем ЖАТ. В отличие от релейных элементов МП при отказе не переходят в защитное состояние, если не использовать специальные меры по контролю правильности их функционирования. Поэтому для синтеза МП систем ЖАТ требуется разрабатывать новые методы обеспечения безопасности, отличные от методов с использованием элементов с несимметричной характеристикой отказов.

Наиболее часто для обеспечения безопасности МП систем ЖАТ используют структурное резервирование, реализуемое аппаратными или программными средствами, т.е. применяют способ параллельной обработки информации в нескольких микроЭВМ или с использованием нескольких программ в одной микроЭВМ.

Для контроля правильности работы каналов обработки информации аппаратно или программно сравнивают результаты выполнения отдельных команд или решения отдельных задач.

Программные методы резервирования и контроля требуют большего (чем аппаратные) времени обнаружения отказов и при их использовании трудно обеспечить требование независимости отказов в различных программах обработки информации. Поэтому в большинстве существующих МП систем ЖАТ используются программно-аппаратные методы контроля правильности функционирования n-кратно резервированных вычислительных каналов, выходные сигналы которых формируются по мажоритарному или конъюнктивному закону.

Резервированием, контролем функционирования и реконфигурацией обеспечивается безопасность МП систем ЖАТ при отказах внутренних элементов микроЭВМ, но необходимо обеспечить также безопасное управление исполнительными объектами при повреждении выходных элементов.

Для количественной оценки безопасности используют вероятностные показатели, определенные ОСТ 32.17--92:

вероятность безопасной работы за время t

где -- функция распределения наработки до опасного отказа; вероятность опасного отказа

интенсивность опасных отказов

где: dz(t) -- условная вероятность опасного отказа за время dt при безотказной работе за период (0,t);

средняя наработка до опасного отказа

параметр потока опасных отказов woп(f), представляющий отношение математического ожидания числа опасных отказов восстанавливаемой системы за произвольно малую наработку к значению этой наработки.

4. Способы передачи ответственных команд

Диспетчерское управление движением поездов сохраняется при любом состоянии комплекса устройств ДЦ. Однако при некоторых отказах в устройствах ЭЦ или АБ, контролирующих условия безопасности движения поездов, возникает необходимость в передаче по телемеханическому каналу ответственных приказов, условия исполнения которых не могут быть проверены отказавшими устройствами.

К таким командам относят: управление пригласительными сигналами; перевод стрелок без контроля состояния стрелочно-путевого участка; искусственное размыкание секций; аварийная смена направления движения на перегоне; другие подобные команды вспомогательного режима управления.

При передаче любой команды под воздействием искажающих факторов могут происходить следующие события:

подавление команды с условной средней вероятностью

где: Pi -- вероятность передачи i-гo из М сообщений; Pi0 -- вероятность подавления i-го сообщения.

Трансформация одной команды в другую с условной средней вероятностью

где: -- вероятность трансформации i-го сообщения в j-e.

С позиций безопасности угрозу представляет трансформация любой команды в ответственную или одной ответственной в другую.

При независимых ошибках такая вероятность может быть определена по выражению Бернулли

где: k -- число переходов 0 >1; q -- число переходов 1>0; l -- число нулевых символов; т -- число единичных символов.

Для ответственных команд недопустима также возможность их возникновения при отсутствии передачи из помех или отказа аппаратуры.

Вероятность возникновения ложной команды из помех может оцениваться как

Таким образом, при передаче ответственных команд необходимо исключать ложные команды с требуемой вероятностью

где: Роо -- вероятность опасного отказа системы.

Требуемая защита от трансформаций и возникновения команд из помех может достигаться использованием известных помехоустойчивых методов передачи информации.

Наибольшие технические трудности представляет выбор защитных мероприятий от опасного отказа аппаратуры при передаче ответственных команд.

Безопасность передачи можно обеспечить в следующих случаях:

система ТУ-ТС в момент передачи исправна и функционирует по установленному алгоритму;

система ТУ-ТС при любом отказе переходит в защитное состояние, т.е. является несимметричной по состояниям на выходах системы в случае отказа. Это означает несопоставимые вероятности между состояниями выходов «включено» и «выключено».

Системы ДЦ, находящиеся в эксплуатации на железнодорожном транспорте, предусматривают передачу ответственных команд с проверкой исправного состояния устройств. Это относится к системам с аппаратной реализацией функций и компьютерным реализациям.

Обеспечение необходимого уровня безопасности движения достигается соблюдением следующих правил:

решение о возможности передачи ответственной команды принимается двумя лицами (диспетчером участка и старшим диспетчером);

посылка ответственной команды возможна только при одновременных согласованных действиях двух лиц;

передача команды осуществляется в два этапа;

на первом этапе посылается предварительная команда с целью проверки исправного состояния устройств и их функционирования по установленному алгоритму с правильной адресацией;

при исправном состоянии устройств прямого и обратного каналов посылается исполнительная команда в тот же адрес;

при правильном приеме исполнительной команды в установленное предварительной командой время ожидания проводится их совместная реализация.

Однако для передачи ответственных команд имеются схемные решения, обеспечивающие и несимметричность по отказам.

Так, на дискретных компонентах по специальным правилам была выполнена бесконтактная система телемеханики с распределительным методом селекции ЦРС (1969 г.).

В системе ЦРС при отказе типа «обрыв» или «короткое замыкание» любого компонента происходил переход системы в защитное состояние. Достигалось это соблюдением следующих принципов схемотехники:

все бесконтактные элементы функционируют в циклическом режиме с временем цикла существенно меньшим времени реакции исполнительных реле ЭЦ;

в каждом цикле функционирования каждый элемент переводится из одного устойчивого состояния в другое и обратно, чем подтверждается его работоспособность;

при отказе любого компонента функциональный элемент или узел переходит в устойчивое состояние;

функциональные узлы гальванически разделены и их взаимодействие проводится не потенциальными, а импульсными сигналами;

для защиты от случайных переходов элементов из одного состояния в другое при воздействии помех или отказе состояния выходов системы меняются только по определенной накопленной совокупности цикловых сигналов. Выбором времени накопления достигается требуемая вероятность ошибки на выходе системы.

С переводом системы на интегральные схемные компоненты принципы достижения несимметричности по отказам на выходах остаются такими же.

Система передачи ответственных команд (СПОК) является примером обеспечения безопасности движения в ДЦ за счет дополнительной аппаратуры, выполненной с учетом принципов достижения несимметричности по отказам на выходах системы при использовании программируемых элементов компьютерной техники с симметричными отказами.

Использована в СПОК известная двухканальная структура с последующим сравнением результатов вычислительных каналов (ВК) аппаратной схемы с несимметричными отказами и релейным интерфейсом с исполнительными устройствами ЭЦ.

Два независимых ВК со сравнением результатов и фоновым тестированием позволяют обнаруживать независимые отказы и исключать возможность их накопления переводом системы в защитное состояние.

Поскольку СПОК является дополнением к любой компьютерной системе ДЦ, то общими являются АРМ ДНЦ и каналообразующие средства.

Для ответственных команд на пульте ДНЦ предусматриваются специальные кнопки, опрашиваемые независимыми контроллерами 1 и 2 (рис. 14). При несовпадении результатов сравнения состояния кнопок происходит отключение центрального устройства схемой контроля контактами реле первого класса надежности и включаются световая и звуковая сигнализации отказа. То же самое происходит при несовпадении результатов приема информации с ЛП из-за неисправности или помех.

Для защиты от ложных команд в СПОК предусмотрено помехоустойчивое кодирование с большим кодовым расстоянием между разрешенными комбинациями и двукратная передача команды с проверкой исправного состояния прямого и обратного трактов передачи по следующему алгоритму.

Предварительная команда, одинаково принятая на ЛП контроллерами 1 и 2, подтверждается передачей с ЛП на ЦП квитирующего сообщения.

При одинаковом приеме этого сообщения на ЦП обоими контроллерами формируется команда запуска исполнения на ЛП.

Одинаково принятая на ЛП контроллерами 1 и 2 команда запуска реализуется через безопасный интерфейс устройствами ЭЦ.

Для контроля исправного состояния СПОК при отсутствии ответственных команд проводится периодическое тестирование устройств.

Для контроля исполнения ответственных команд на АРМ ДНЦ обычная индикация системы ДЦ дополняется еще индикацией со стороны средств СПОК.

Страницы: 1, 2, 3



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты