Діагностика системи запалення ДВЗ
p align="center"> 5 АЛГОРИТМІЗАЦІЯ ПРОЦЕСУ ДІАГНОСТИКИ ТА РЕМОНТУ СИСТЕМ ЗАПАЛЕННЯ

У даному розділі буде розглянуто та побудовано алгоритми процесу діагностики транспортних засобів з електронними системами запалення. Класичні системи детально розглядатися не будуть так як вони досить ретельно розглянуті і в професійно прикладній літературі і в наукових працях і тому не мають такої актуальності як сучасні електронні та мікропроцесорні системи запалення, до того ж тенденції сучасного автобудування йдуть до того щоб взагалі відмовитися від класичних систем запалення з механічним приводом розподілювача і навіть дротів високої напруги.

5.1 Процес діагностування двигунів

Процес діагностування полягає в сприйнятті діагностичних параметрів (S1, S2, ..., Sn), вимірі їхніх величин, що визначають у відомому масштабі параметри технічного стану (X1, X2, ..., Xn) механізму, і видачі висновку на основі зіставлення обмірюваних величин із допустимими (Sу1, Sу2, ...., Sуn) або граничними (Sn1, Sn2, ..., Snn) величинами [13].

Процес сприйняття й виміру діагностичних параметрів показаний на рис. 5.1 [13]. Об'єкт діагностики О має технічний стан, що характеризується параметром Х. Функціонуючи, або під впливом стимулюючого пристрою (наприклад, стенда), він породжує відповідний діагностичний параметр S. Цей параметр сприймається за допомогою якого-небудь одного або декількох датчиків D (механічних, теплових, електричних, індукційних і ін.). Від датчика параметр у трансформованому виді S' надходить у пристрій Y для відповідної обробки (розчленовування посилення, дешифрування, аналізу й т.п.) і далі у вимірювальний пристрій И, де виміряється параметр X технічного стану в певному масштабі б за допомогою приладу (стрілочного типу, індикатора, діаграми, компостера й т.п.).

Рис. 5.1. Схема процесу діагностики.

Прості механізми діагностують по одній найбільш вагомій ознаці, а складні по декількох. Діагностика складних механізмів можлива або по одній ознаці шляхом аналізу отриманої інформації, або одночасно по декількох діагностичних параметрах шляхом синтезу відомостей про стан об'єкта. В останньому випадку висновок про технічний стан роблять на основі логічної обробки отриманих результатів.

При логічній обробці враховується, що кожний зі структурних параметрів, досягши що попереджає або граничної величини (тобто перетворившись у несправність), може породити одночасно кілька різних діагностичних параметрів відповідної величини. При цьому різні несправності можуть частково супроводжуватися однаковими діагностичними параметрами. Так, наприклад, зношування запірної голки поплавкової камери карбюратора може викликати витрата палива, що перевищує норму, перегрів двигуна, ріст змісту CO у газах, що відробили, і т.д. Такі ж і деякі інші діагностичні параметри супроводжують зношування дозуючих пристроїв. При цьому несправності можуть бути такими, що механізм не перестає функціонувати. У цьому випадку для локалізації несправності складного пристрою необхідно користуватися цілим комплексом діагностичних параметрів. Для рішення подібних завдань треба знати кількісні характеристики типових несправностей (тобто величини структурних параметрів, при досягненні яких потрібна профілактика або ремонт) і породжуваних ними діагностичних параметрів, що досягли що попереджають або граничних величин, а також зв'язків між тими й іншими.

Розглянемо схематичний приклад методики виявлення однієї з можливих несправностей механізму, при наявності якої він вимагає профілактики. Нехай відомо, що механізм може мати три типових несправності Xy1, Xy2, Xy3 і три породжуваних ними діагностичних параметра Sy1, Sy2, Sy3. Взаємозв'язок між несправностями й параметрами можна виразити таблицею (табл. 5.1) [13], називаною діагностичною матрицею. Одиниці, проставлені в клітках горизонтального ряду цієї матриці, указують на існування несправності механізму при наявності даного діагностичного параметра S ? Sy, а нулі - на відсутність несправності. Подібні діагностичні матриці становлять на основі вивчення структурних зв'язків між елементами механізму, параметрами його стану й діагностичних параметрів. У розглянутому прикладі існування першого діагностичного параметра, що має величину Sy1, означає можливість першої Xy1 або другий Xy2 несправності; існування другого Sy2 - відповідно першої Xy1 і третьої Xy3, а існування третього Sy3 -другої Xy2 і третьої Xy3 несправностей. Аналізуючи цю елементарно просту таблицю, неважко помітити, що наявність у механізму першої несправності супроводжується першим і другим діагностичним параметром, наявність другої - першим і третім, наявність третьої - другим і третім. Із цього виходить, що при виникненні параметрів Sy1 і Sy2 механізм має несправність Xy1, при наявності Sy1 і Sy3 - несправність Xy2 а при наявності Sy2 і Sy3 - несправність Xy3.

Табл.. 5.1 Принципова схема діагностичної матриці

Параметри

Несправності

Ху1

Ху2

Ху3

Sy1

1

1

0

Sy2

1

0

1

Sy3

0

1

1

Реальні завдання цього виду значно складніше через велику кількість несправностей і ознак і внаслідок множинних зв'язків між тими й іншими. У цих випадках доцільне застосування логічних автоматів з датчиками, що сприймають діагностичні ознаки, і граничними пристроями для включення відповідних ланцюгів автомата при досягненні діагностичними параметрами нормативних величин. При цьому в автомат послідовно надходить дози інформації, що знижують невизначеність стану (ентропію) діагностуємого об'єкта, і відбувається виявлення несправності, що може існувати при даній комбінації діагностичних параметрів. У підсумку спрацьовує індикатор, що фіксує шукану несправність.

5.2 Алгоритмізація діагностики при технологічному процесі технічного обслуговування

По технологічних ознаках діагностика в автотранспортному підприємстві характеризується: призначенням, технологічним устаткуванням, режимом проведення й місцем у технологічному процесі технічного обслуговування й ремонту (рис. 5.2). По своєму призначенню діагностика може бути спеціалізованої й сполученої з технічним обслуговуванням і ремонтом.

Спеціалізована діагностика являє собою комплекс перевірочних випробувань і операцій, виконуваних на спеціалізованих постах (лініях). Створення таких постів доцільно через специфічність діагностичних робіт і діагностичного встаткування. Ціль спеціалізованої діагностики полягає в проведенні встановленого комплексу діагностичних робіт і головним чином перед ТЕ-1, ТЕ-2 і ТР, щоб виявити потребу й обсяг ремонту й профілактики. Спеціалізовану діагностику проводять у плановому порядку з періодичністю, що збігається або кратної періодичності технічного обслуговування. У деяких випадках можливе використання спеціалізованих постів діагностики для повторної, заключної перевірки якості проведеного технічного обслуговування або ремонту.

4

Рис. 5.2 Технологічні види діагностики

Сполучена діагностика проводиться безпосередньо на постах і лініях технічного обслуговування й ремонту двигунів для забезпечення оперативного або заключного контролю виконуваних робіт. Вона проводиться по потребі.

Технологічний зв'язок (рис. 5.3) [13] зони діагностики із зонами профілактики, ремонту й стоянки обумовлений самим змістом діагностичного процесу.

4

Рис. 5.3 Схема технологічних зв'язків між зонами діагностики, профілактики, ремонту й стоянки

Діагностичний пристрій (або оператор), вимірявши в деякому масштабі діагностичним параметром S величину структурного параметра X стану об'єкта, порівнює результат із граничним Sn і що попереджає Sу показниками. На підставі цього встановлюються технологічні потоки й обсяги відповідних робіт.

Питання про місце діагностики в технологічному процесі технічного обслуговування й ремонту системи запалення вирішується системно з урахуванням умов експлуатації, наявності і якості розташовуваних діагностичних засобів. У принципі місце діагностики в технологічному процесі технічного обслуговування обумовлено доцільністю спеціалізації ряду діагностичних робіт, необхідністю оперативного контролю за якістю технічного обслуговування й ремонту в процесі їхнього виконання, а також потребою в заключних перевірках двигуна, пов'язаних з доробками.

Визначення місця діагностики в технологічному процесі технічного обслуговування й ремонту системи запалення дозволяє сформулювати основні вимоги до її засобів. Для діагностики системи запалення в цілому і її вузлів необхідні стаціонарні стенди з великою точністю замірювання параметрів (стаціонарні мотор тестери, осцилографи і т.п.). Для поелементної діагностики, сполученої з технічним обслуговуванням і ремонтом, повинні використатися пересувні комплекси й переносні пристосування (сканери, переносні мобільні мотор тестери, тощо).

Економічна ефективність діагностики двигунів в автотранспортному підприємстві залежить від досконалості застосовуваних методів і засобів, правильного їхнього використання, оптимальних діагностичних нормативів, раціональних режимів і технологічних процесів стосовно до даних умов.

Економічна ефективність діагностики оцінюється зіставленням зниження витрат на експлуатацію двигуна з додатковими витратами на його діагностику. Зниження експлуатаційних витрат визначається зменшенням обсягу поточного ремонту й супутнього йому витрати запасних частин: скороченням виробничих площ зони ремонту, зменшенням трудомісткості контрольних робіт за рахунок автоматизації, економією палива, підвищенням продуктивності автомобіля в цілому і окремих його вузлів; збільшенням його ресурсу й в остаточному підсумку підвищенням коефіцієнта готовності парку. Витрати на діагностику системи запалення включають капіталовкладення на придбання й установку діагностичного встаткування, вартість займаних їм виробничих площ і експлуатаційні витрати, пов'язані із проведенням діагностики (зарплата операторів, догляд за встаткуванням, простої автомобіля при діагностиці).

Зниження експлуатаційних витрат по кожній з перерахованих статей визначають досвідченим шляхом на основі результатів експлуатації досить великої кількості автомобілів, що піддаються діагностиці протягом певного пробігу. Отримані при цьому дані порівнюють із аналогічними витратами на автомобіль, що працює у тих же умовах, але без застосування діагностики.

На основі цього визначають витрати, пов'язані з діагностикою в питомому вирахуванні, і строк окупності діагностичних засобів.

Діагностика систем запалення як один з найважливіших засобів удосконалювання їхнього технічного обслуговування має широкі перспективи. Перспективи її розвитку пов'язані з вишукуванням і освоєнням нових методів, засобів і технологічних процесів діагностики, ув'язаних з технічним обслуговуванням і ремонтом систем запалення, а також підвищенням їх контролеспроможності. Підвищення якості пошуку несправностей в системі запалення, прогнозування ресурсу й постановки діагнозу у великому ступені залежить від широкого використання електроніки й засобів автоматизації процесів діагностування.

5.4 Технологія процесу діагностики.

Робота діагноста складається із трьох етапів: збір діагностичної інформації, її обробка, ухвалення рішення. Для збору застосовується діагностичне встаткування, наприклад таке як описане у розділі 2. Процес можна описати так [15].

1. Опитування клієнта про суть проблеми. Коли, як, при яких обставинах проявляється дефект. Часто "допит із пристрастю" значно полегшує подальший пошук.

2. Візуальний огляд підкапотного простору. Уважно дивимося, чи немає видимих ушкоджень електропроводки, шлангів, високовольтних проводів. Чи немає слідів стороннього втручання, найчастіше з боку установників ГБО і автосигналізацій. Типові випадки - пучок дротів, що йде до датчика синхронізації, після перебирання двигуна виявляється лежачої на випускному колекторі, або відірвані проведення від датчика швидкості при заміні зчеплення. Взагалі слідам втручання треба приділяти серйозну увагу. Корисно переконатися, що всі шланги вентиляції картера, адсорбера й т.п. перебувають на своїх штатних місцях, запобіжники ЭСУД не перегоріли, а в баку є бензин. Дуже бажано перевірити стан повітряного фільтра. Часто він буває порваний, і це приводить до виходу ДМРВ із ладу.

Тільки після всього цього можна приступати до роботи із приладами.

3. Першою справою за допомогою сканера розберемося, з яким типом ЕБК й з якою системою (Росія-83, Євро-2, Євро-3 і т.п.) ми маємо справу. Згадаємо особливості її роботи, її склад, а також можливі "уроджені дефекти". Наприклад, прошивання типу І27, блок Январь 7 з антиджеркингом і т.п. Також на цьому етапі необхідно замірити компресію в циліндрах, щоб відразу визначити, потрібно чи ні більше глибоке втручання у двигун. При низької компресії або її великому розкиді по циліндрах необхідний візит до моториста.

4. Візуально контролюємо свічі. Кількість нагару, його колір, зазор, стан електродів, наявність/відсутність пробою на ізоляторі.

5. Перевіряємо в статиці показання датчиків і виконавчих механізмів за допомогою сканера. Можна посувати РХХ, включити вентилятор і бензонасос, зробити баланс форсунок.

6. Поводимо діагностику системи живлення по тиску палива. Якщо претензій до насоса, регулятору тиску, датчикам, ИМ, свічам і проводам у статиці ні, заводимо двигун.

7. На працюючому двигуні перевіряють сканером ті ж самі параметри. Уважно слухаємо двигун на предмет сторонніх шумів, стукотів і гулу.

8. Фіксуємо показання газоаналізатора.

9. При необхідності можна зняти мотортестером осцилограми високої напруги.

10. Якщо є підозра на невірну установку фаз ГРМ, виконуємо мотортестером перевірку тиску в циліндрі.

11. А от тепер саме цікаве. Уважно дивимося на отримані результати, аналізуємо їх і робимо висновки, приклад осцилограм, отриманих за допомогою мотор тестера Car Test, наведений у графічній частині роботи.

Іноді в сумнівних випадках є зміст підмінити несправний елемент і зняти показання повторно або зробити пробну поїздку. Для цього на робочому місці діагноста повинен бути підмінний фонд. Але в кожному разі потрібно прагнути до такого ступеня майстерності, коли виявлення дефекту відбувається тільки за допомогою приладів і майже зі стовідсотковою ймовірністю.

5.3 Методики відшукування несправностей по осцилограмам

У цьому розділі коротко викладені принципи визначення несправностей при розгляді осцилограм, отриманих за допомогою стенда комп'ютерної діагностики CarTest-1.1.0.

Система запалювання автомобіля може бути класичної (контактної), електронної (з датчиком холу в трамблері) або мікропроцесорної (без трамблера). Осцилограми первинної напруги на котушці для кожної системи різні, а вторинного (на свічах) - майже однакові. Тому для початку розглянемо осцилограму вторинної напруги, рис. 5.4.

1. Зона горіння іскри:

а) час горіння іскри на справному двигуні повинне становити 1.2 - 1.7 мс (миллісекунди). Напруга горіння в ідеальному випадку повинне бути постійним. Зменшення напруги під час горіння іскри вказує на високий опір у високовольтному проведенні або наконечнику, збільшення напруги - на низький опір в іскровому проміжку свічі, що найчастіше викликано товстим шаром нагару.

б) скачки напруги під час горіння іскри вказують так само на нагар або присутність у паливоповітряної суміші водяних пар.

Рис. 5.4 Осцилограма вторинної напруги:

1 - Зона горіння іскри

2 - Зона залишкових коливань котушки

3 - Амплітуда напруги пробою іскри

4 - Початок заряду котушки

2. Амплітуда напруги пробою:

а) на неодруженому ходу й прогрітому двигуні нормальне значення від 8 до 14 КВ

б) при нормальному часі горіння знижена напруга пробою може вказувати на перезбагачену суміш, а підвищене - на занадто бідну суміш або підсос повітря в задросельному просторі. При різкому відкритті дросельної заслінки напруга пробою повинне короткочасно з не більше ніж на 40%.

в) підвищена напруга пробою при зменшеному часі горіння іскри й нормальному зазорі у свічі вказує на обрив у високовольтному ланцюзі (обрив вторинної обмотки котушки запалювання, несправність опору в бігунку або свічковому наконечнику, обрив високовольтного проведення)

г) знижена напруга пробою при збільшеному часі горіння іскри вказує на коротке замикання у вторинному ланцюзі (замикання у вторинній обмотці котушки запалювання, пробій у кришці трамблера, бігунку, високовольтному проведенні на масу). Якщо нічого не допомагає - погана компресія.

3. Зона залишкових коливань котушки: кількість залишкових коливань залежить від типу котушки (її індуктивності) і повинне бути більше чотирьох. Якщо менше чотирьох коливань - у вторинній обмотці котушки є короткозамкнений виток.

Початок заряду котушки: якщо котушка підключена правильно, тобто пік першого коливання повинен бути спрямований униз. У іншому випадку переплутана полярність підключення первинної обмотки котушки запалювання.

Осцилограма первинної напруги в контактній системі запалювання представлена на рис. 5.5.

Рис. 5.5 Осцилограма первинної напруги: 1 - зона горіння іскри (робота конденсатора); 2 - залишкові коливання первинної обмотки

Максимальна амплітуда коливань у зоні 1 , рис. 5.5, повинна бути не менш 250 вольтів.

Мала кількість і неправильна форма коливань у зоні 1 указує на несправність конденсатора.

Мала кількість коливань (менше 3) у зоні 2 з одночасним зменшенням амплітуди коливань у зоні 1 указують на наявність короткозамкненого витка в первинній обмотці котушки запалювання.

Особовий інтерес у контактній системі запалювання має кут замкнутого стану контактів і момент їхнього замикання. До речі, на показаних на рис. 5.6 осцилограмах добре видний головний недолік звукової карти - неможливість виміру постійної напруги. По ідеї лінія після замикання повинна йти по прямій, а не по спадні. Однак основні несправності переривника легко спостерігаються.

Кут замкнутого стану контактів вказується в документації на автомобіль, наприклад для ВАЗ-2101 дорівнює 55 градусів і повинен бути постійним при будь-якій частоті обертання двигуна, рис. 5.6, а).

Асинхронизм кута замкнутого стану контактів не повинен перевищувати 3 градуси, інакше зношені підшипники в трамблеру, рис. 5.6, б).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты