Діагностика системи запалення ДВЗ
p align="left">Режим "Шпаруватість, Частота" дозволяє програмі в реальному часі відображати поточну шпаруватість і частоту проходження імпульсу періодичного сигналу. Це може бути необхідним для аналізу сигналів ШИМ (Широтно-Імпульсна Модуляція) керуючих різними виконавчими механізмами, а так само для аналізу роботи датчиків із цифровим вихідним сигналом.

PlugIn "Тимчасові параметри", режим "Шпаруватість, Частота", рис. 2.7.

Рис. 2.7 Режим шпаруватість та частота

PlugIn "Тимчасові параметри", рис. 2.8, відображає параметри періодичного сигналу того каналу осцилографа, по сигналі якого обрана синхронізація. Режим Графік розрідження призначений для оцінки стану механіки двигуна методом дослідження характеру зміни розрідження у впускному колекторі, виміру рівня пульсацій тиску газів у картері й у вихлопній трубі. У режимі Відносна компресія проводиться оцінка відносної компресії в циліндрах двигуна на підставі осцилограми струму стартера, тому що відомо, що чим більше компресія в циліндрі, тим більше амплітуда пульсацій струму стартера на такті стиску в даному циліндрі. Cкрипти аналізатора.

У програмне забезпечення USB Autoscope убудована функція виконання файлів скриптів аналізатора.

Рис. 2.8 Тимчасові параметри

Функція дозволяє автоматизувати аналіз осцилограм по зовнішньому алгоритмі, записаному у файлі скрипта аналізатора мовою JScript або VBScript.

Короткий технічний опис представлено в таблиці 2.1.

Таблиця 2.1

USB Autoscope II споряджений гальванічною розв'язкою вимірювальних ланцюгів і ланцюгів ПК (шини USB).

Параметри ізоляції гальванічної розв'язки USB Autoscope II

тестова напруга ізоляції

2,5k протягом 1 хвилини

ємність ізоляції

не вище 10p

опір ізоляції

не нижче 1x1014Ohm

Режим аналогового осцилографа

кількість вхідних каналів

8

кількість каналів осцилографа

1, 2, 4, 8 (на вибір)

дозвіл АЦП

12 біт

діапазон вимірюваної напруги

±15V 1-4й аналогові входу,

6й диференціальний вхід;

±150V 5й аналоговий вхід,

1-4й аналогові входу при використанні зовнішніх вхідних дільників напруги 1:10;

±1500V 5й аналоговий вхід при використанні зовнішнього вхідного дільника напруги 1:10,

1-4й аналогові входу при використанні зовнішніх вхідних дільників напруги 1:100;

±50k ємнісної датчик

максимальна частота оцифровки на канал для USB Autoscope II

500kHz в 1-но канальному режимі;

250kHz в 2-х канальному режимі;

125kHz в 4-х канальному режимі;

50kHz в 8-ми канальному режимі

максимальна частота оцифровки на канал для USB Autoscope I

250kHz в 1-но канальному режимі;

125kHz в 2-х канальному режимі;

50kHz в 4-х канальному режимі;

25kHz в 8-ми канальному режимі

режим оцифровки

безперервний потік

вхідний опір

1МОм

додаткові можливості

- вільне перемикання вхідних каналів (можливість підключення каналу Осцилографа до кожного з фізичних входів "на лету")

- підтримка зовнішніх програмних модулів, що вбудовують, PlugIn для виконання специфічних тестів

- можливість створення користувальницьких настроювань для часто використовуваних режимів

- функція відображення значення вимірюваної фізичної величини

- виконання програмою файлів скриптів аналізатора з метою автоматизації аналізу осцилограм

Режим цифрового аналізатора

кількість вхідних каналів

8

режими

4-х, 8-и канальний аналізатор

максимальна частота оцифровки на канал для USB Autoscope II

500kHz в 4-х канальному режимі;
500kHz в 8-ми канальному режимі

максимальна частота оцифровки на канал для USB Autoscope I

500kHz в 4-х канальному режимі;
250kHz в 8-ми канальному режимі

режим оцифровки

безперервний потік

вхідний опір

10kOm

Короткий опис ПЗ

підтримувані ОС

Windows 98Se/Me, Windows 2000/XP

основні можливості

режим відображення + запис + виміру в реальному масштабі часу одночасно

діапазон шкали розгорнення для USB Autoscope II

50мкс/справ. - 1з/дел.

в аналоговому режимі;

50мкс/справ. - 1з/дел.

у режимі цифрового аналізатора

діапазон шкали розгорнення для USB Autoscope I

100мкс/справ. - 1з/дел.

в аналоговому режимі;

50мкс/справ. - 1з/дел.

у режимі цифрового аналізатора

діапазон шкали напруги (тільки в режимі аналогового осцилографа)

50m/справ. - 5V/справ.;

0.5V/справ. - 50V/дел.

при використанні вхідного дільника напруги 1:10;

5V/справ. - 500V/дел.

при використанні вхідного дільника напруги 1:100;

50V/справ. - 5k/дел.

при використанні вхідного дільника напруги 1:1000;
500V/справ. - 50k/дел.

при використанні ємнісного датчика

режим синхронізації

передній/задній фронт зазначеного рівня сигналу кожного із вхідних каналів

час запису для USB Autoscope II при максимальній частоті оцифровки (за умови наявності дискового простору), хв.

Windows 2000/XP

аналоговий режим - 23*;

режим цифрового аналізатора - 71*

Windows 98Se/Me

аналоговий режим - 12*;

режим цифрового аналізатора - 35*

час запису для USB Autoscope I при максимальній частоті оцифровки (за умови наявності дискового простору), хв.

Windows 2000/XP

аналоговий режим - 47*;

режим цифрового аналізатора - 71*

Windows 98Se/Me

аналоговий режим - 23*;

режим цифрового аналізатора - 35*

максимальний розмір файлу осцилограми

Windows 2000/XP 1Гбайт

Windows 98Se/Me 512Mбайт

вимірювальний інструментарій

max / min / середня напруга, різниця напруг, час, частота, шпаруватість і фаза сигналу

підтримувані ОС

Windows 98Se/Me, Windows 2000/XP

вихідні формати

бінарний файл;

графічний файл у форматі *.jpg;

одержання твердої копії осцилограми за допомогою печатки

додаткові можливості

З метою автоматизації аналізу осцилограм, убудована можливість виконання програмою аналізу осциллограмм по зовнішньому алгоритмі, записаному у файлах скриптов аналізатора. Можливість компресії/декомпресії "на лету" при збереженні/читанні файлу.

Найпростіші функції редагування бінарного файлу.

* - зі зменшенням частоти оцифровки, час запису збільшується в пропорційну кількість разів.

Мінімальні вимоги до ПК

центральний процесор для USB Autoscope II

Pentium III - 1 000 МГц

центральний процесор для USB Autoscope I

Pentium II - 500 МГц

оперативна пам'ять

128 Мб

жорсткий диск

10 Гб UDMA 33

оптичний привод

CD-ROM для інсталяції програмного забезпечення

інтерфейс

порт USB 1.1 (USB 2.0)

відео адаптер

800x600, 256 кольорів, 4 Мб, AGP

монітор

SVGA

операційна система (ОС)

Windows 98se/Me або Windows 2000/XP

додаткові вимоги

обов'язково повинен бути включений режим DMA

Універсальні настроювання користувача.

Настроювання режимів роботи USB Autoscope подібні до роботи з аналоговим осцилографом, разом з тим, використаються всі переваги цифрової техніки. Одне зі зручностей, що дозволяє заощаджувати час, це можливість самостійно створювати або використати готові настроювання користувача для того, щоб не потрібно було щораз набудовувати USB Autoscope на ті самі режими роботи. Таким чином, можна один раз настроїти USB Autoscope на часто використовуваний режим і зберегти користувальницьке настроювання, назвавши її, наприклад "Лямбда-Зонд" або скачати універсальні настроювання користувача. І наступного разу, коли потрібно буде переглянути осцилограму вихідного сигналу лямбда-зонда, уже не потрібно буде знову набудовувати режим роботи USB Autoscope, а просто викликати настроювання користувача "Лямбда-Зонд

Нестаток полягає в тім, що струм споживання будь-якого USB пристрою не повинен перевищувати 500m. Струм споживання USB Autoscope II у робочому режимі становить 180m. Але, не дивлячись на це, було замічено, що при включенні USB Autoscope II на деяких моделях комп'ютерів типу Notebook "жовтої зборки", наприклад ASUS A6Rp, відбувається зниження напруги живлення +5V шини USB комп'ютера. Через збій у ланцюзі живлення шини USB комп'ютера, USB Autoscope II не включається й не може працювати при живленні від USB-порту таких комп'ютерів.

Подібний ефект відбувається так само у випадку, коли в настроюваннях BIOS материнської плати комп'ютера обране мале значення максимальне припустимого струму споживання для USB пристроїв, а можливість регулювання значення максимально припустимого струму споживання для USB пристроїв існує тільки в деяких BIOS материнських плат. У такому випадку, можна забезпечити живлення USB Autoscope II від стороннього джерела напруги шляхом включення його через зовнішній активний USB HUB.

2.2 Пристрій для виявлення детонацій в окремих циліндрах двигуна внутрішнього згоряння

Пристрій ставиться до діагностування двигунів внутрішнього згоряння (ДВС), зокрема до пристроїв для виявлення детонаційного згоряння палива у двигунах, і може бути використане в складі систем діагностики й керування запалюванням ДВС [10].

Метою винаходу є підвищення точності виявлення рівня детонації в Vожному циліндрі двигуна.

Схема пристрою представлена на рис. 2.9

Пристрій містить підключений входом до датчика детонації перший підсилювач 1, вихід якого через блок 2 нормування, фільтр 3 пов'язаний із входом пікового детектора 4 і інформаційним входом першого ключа 5. Вихід детектора 4 підключений до інформаційних входів другого ключа 6 і третього ключа 7, вихід якого через другий підсилювач 8 підключений до інформаційного входу четвертого ключа 9, а вихід останнього через резистор 10 пов'язаний з першим входом схеми 11 порівняння, другий вхід якої підключений до виходу детектора 4, а третій вхід виконаний для підключення до формувача сигналу дозволу (не показаний).

Вихід формувача 12 кутового сектора підключений до керуючих входів першого, третього й четвертого ключів 5, 7 і 9 і першому входу формувача 13 імпульсу запису, перший вихід якого підключений до керуючого входу другого ключа 6, а другий його вихід пов'язаний з першою групою входів першого блоку 14 двовходових елементів И, виходи якого підключені до відповідних входів першої групи входів блоку формування опорних сигналів, входи другої групи якого підключені до першого входу схеми 11 порівняння. Блок формування опорних сигналів виконаний у вигляді груп з послідовно з'єднаних комутаторів 15, постаченим інформаційним і керуючим входами, і конденсаторів 16, число яких дорівнює числу циліндрів двигуна. Інформаційні входи комутаторів 15 утворять другу групу входів блоку, першу групу входів якого утворять керуючі входи комутаторів 15. Другі виходи конденсаторів 16 і виходи ключів 5 і 6 пов'язані із загальною шиною джерела живлення (не показаний). Лічильник 17 виконаний з рахунковим входом для підключення до датчика положення колінчатого вала двигуна, настановним входом для підключення до блоку початкової установки й входом скидання, виходи лічильника 17 пов'язані із входами дешифратора 18, перший і другий виходи якого підключені відповідно до першого й другого входів формувача 12, а третій його вихід - до входу скидання лічильника 17 і входу розподільника 19 рівнів, виходи якого пов'язані з відповідними входами другої групи блоку 14 і входами першої групи другого блоку 20 двохвходових елементів И, друга група входів якого й другий вхід формувача 13 підключені до виходу схеми порівняння. Кількість елементів виходів і входів у першій і другій групах входів блоків 14 і 20 і виходів дешифратора 19 дорівнює числу циліндрів двигуна.

Пристрій працює в такий спосіб.

Сигнал з датчика детонації через підсилювач 1 надходить на вхід блоку 2 нормування.

Пронормований по амплітуді сигнал надходить у фільтр 3, на виході якого з'являються імпульси із частотою заповнення, що відповідає частоті вібрацій двигуна при детонації, які виникають при нормальному згорянні палива (імпульси фонового шуму), детонаційному згорянні (імпульси детонації) і від механічних ударів при спрацьовуванні клапанів, розподільного вала й інших вузлів двигуна (імпульси перешкоди). Ці імпульси мають, що змінюється в кожному півоберті колінвала двигуна амплітуду, тривалість і форму, причому зі збільшенням частоти обертання колінчатого вала двигуна амплітуди й частота проходження імпульсів збільшується незалежно й за довільним законом. Сигнал з виходу фільтра 3 надходить на вхід пікового детектора 4 тільки тоді, коли ключ 5, підключений до входу пікового детектора 4, перебуває в закритому стані.

Рис. 2.9 Схема пристрою для виявлення детонацій в окремих циліндрах ДВС

Керуючий сигнал для закриття ключа 5 дозволу проходження сигналу виробляється в результаті обробки кутових імпульсів і імпульсів початкової установки, що надходять на входи лічильника 17 кутових імпульсів. Імпульс початкової установки, що з'являється в момент проходження поршнем певного циліндра верхньої мертвої крапки, періодично встановлює лічильник 17 кутових імпульсів у вихідний стан. Кутові імпульси, що визначають кутове положення колінчатого вала двигуна, перетворяться лічильником 17 кутових імпульсів у цифровий код.

Дешифратор 18 виділяє кутові імпульси, які визначають початок і кінець кутового сектора, у якому виникає детонаційне згоряння палива. Імпульси початку й кінця кутового сектора надходять на входи формувача 12 імпульсу кутового сектора, що формує імпульс, що надходить на керуючі входи ключів 5, 17 і 9, і переводить їх на час дії імпульсу в закритий стан. У результаті піковий детектор 4 обробляє сигнал з фільтра 3 тільки в заданому кутовому секторі.

На виході пікового детектора 4 сигнал запам'ятовується й одночасно надходить на другий вхід схеми 11 порівняння. Одночасно імпульс кутового сектора з виходу формувача 12 надходить на перший вхід формувача 13 імпульсу запису, підготовляючи останній для видачі імпульсу запису. Із другого виходу формувача 13 цей імпульс кутового сектора без зміни тривалості надходить на об'єднані входи першої групи блоку 14. На одному із входів групи блоку 14 є присутнім розв'язний рівень, що надходить із відповідного виходу розподільника 19 рівнів, а на відповідному виході одного з елементів И блоку 14 з'являється імпульс кутового сектора, що надходить на керуючий вхід одного з відповідного комутатора 15.

Опорний рівень для певного циліндра з відповідного накопичувального конденсатора 16 надходить на перший вхід схеми 11 порівняння, що видає логічний імпульс детонації тільки при наявності сигналу дозволу на третьому вході й при перевищенні поточним значенням сигналу в кутовому секторі опорного рівня даного циліндра. Сигнал дозволу надходить на третій вхід схеми 11 порівняння тоді, коли ДВС працює в детонаціонно- небезпечній зоні, тобто при певних значеннях навантаження на валу двигуна й частоти обертання колінвала. По зрізі імпульсу кутового сектора ключі 5, 7 і 9 відкриваються. Формувач 13 імпульсу запису при відсутності детонації в даному циліндрі (відсутній логічний імпульс детонації з виходу схеми 11 порівняння) виробляє імпульс запису постійної тривалості, що по ланцюзі проходження імпульсу кутового сектора надходить на керуючий вхід комутатора 15 накопичувального конденсатора даного циліндра й утримує його у відкритому стані. Збережене в піковому детекторі 4 поточне значення фонового шуму даного циліндра через відкритий перший ключ 7, підсилювач 8, відкритий другий ключ 9, резистор 10, відкритий комутатор 15 даного циліндра протягом дії імпульсу запису надходить у накопичувальний конденсатор 16 даного циліндра для уточнення величини опорного рівня. По зрізі імпульсу запису комутатор 15 накопичувального конденсатора даного циліндра закривається, а формувач 13 імпульсу запису виробляє імпульс скидання, що надходить на керуючий вихід ключа 6 і переводить його у відкритий стан до початку формування наступного імпульсу кутового сектора, при цьому забезпечується розряд накопичувальної ємності пікового детектора.

Наприкінці такту робочого ходу даного циліндра, коли поршень наступного циліндра, у якому починається такт робочого ходу, перебувати у верхній мертвій крапці, дешифратор 18 імпульсів початку й кінця кутового сектора виробляє імпульс, що надходить на вихід початкової установки лічильника 17 кутових імпульсів, установлюючи останній у вихідний стан, і на рахунковий вихід розподільника 19 рівнів, що виробляє розв'язний рівень для керування комутатором 15 накопичувального конденсатора наступного один по одному роботи циліндра двигуна. Процес формування імпульсів керування ключами повторюється.

При наявності детонації в певному циліндрі схема 11 порівняння видає логічний імпульс детонації, що одночасно надходить на об'єднані виходи другої групи блоку 20 і другий вихід формувача 13 імпульсу запису. На одному з виходів першої групи двохходових елементів і, підключених до відповідних виходів розподільника 19 рівнів, є присутнім розв'язний рівень для даного циліндра. У результаті детонації з'являється на відповідному виході блоку 20, що ідентифікований з даним циліндром.

При надходженні логічного імпульсу детонації на другий вихід формувача 13 імпульсу запису останній не виробляє імпульс запису, а відразу формує імпульс для розряду накопичувальної ємності пікового детонатора 4, крім цього участь імпульсу детонації у формуванні опорного рівня для даного циліндра.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты