Тепловой и динамический расчет автомобильного двигателя
ри графическом методе из начала координат проводится луч ОС под углом ° к оси абсцисс, а также лучи OD и OE под определенными углами и к оси ординат:

; (1.55)

; (1.56)

;

;

Политропа расширения строится при помощи лучей ОС и ОЕ. Политропа сжатия строится при помощи лучей ОС и ОD.

Производим построение теоретической индикаторной диаграммы.

При построении действительной диаграммы углы фаз газораспределения принимаются ориентировочно на основе статистических данных для современных четырехтактных автомобильных двигателей.

Таблица 1.2 - Ориентировочные значения углов поворота коленчатого вала, определяющих положение характерных точек действительной индикаторной диаграммы

Угол п.к.в.

(точка) диаграммы)

Тип двигателя

Бензиновый

?1(r')

20

?2(a")

65

?(c')

40

??1(f)

10

??2(zд)

10

Y1 (b')

60

Y2 (a')

25

Для нанесения характерных точек действительной индикаторной диаграммы на теоретическую диаграмму используем метод Брикса.

Поправка Брикса:

(1.57)

где ; - радиус кривошипа; - длина шатуна.

Для автомобильных и тракторных двигателей:

?=(0,23 - 0,3);

принимаем: ? = 0,28.

Под индикаторной диаграммой строим вспомогательную полуокружность с диаметром равным ходу поршня. От центра полуокружности в сторону н.м.т. откладываем поправку Брикса. Согласно метода Брикса наносим характерные точки действительной индикаторной диаграммы, затем производим скругление индикаторной диаграммы.

2. Расчет и построение скоростной характеристики двигателя

Построение кривых скоростной характеристики ведется в интервале частот вращения коленчатого вала от = 780 миндо = 6600 мин (значение = 5500 мин), где - частота вращения коленчатого вала при номинальной мощности.

Расчетные точки кривых эффективной мощности и эффективного удельного расхода топлива определяются по следующим зависимостям через каждые 582 мин:

(2.1)

(2.2)

где ,, - соответственно номинальная эффективная мощность (кВт), удельный эффективный расход топлива при номинальной мощности (), частота вращения коленчатого вала при номинальной мощности (мин);

, , - соответственно эффективная мощность (кВт), удельный эффективный расход топлива (), частота вращения коленчатого вала (мин) в искомой точке скоростной характеристики;

- коэффициенты, значения которых устанавливаются экспериментально (см. табл. 2.1).

Таблица 2.1 - Значение эмпирических коэффициентов для расчета скоростной характеристики двигателя

Эмпирический коэффициент

Значение

1

1

1,2

1

0,8

Точки кривых эффективного крутящего момента (Нм) и часового расхода топлива (кг/ч) определяются по формулам:

(2.3)

(2.4)

Аналогично производим расчеты для остальных значений . Результаты вычислений заносим в таблицу 2.2

Коэффициент приспособляемости К:

(2.5)

где - эффективный крутящий момент при номинальной мощности.

Таблица 2.2 - Расчеты внешней скоростной характеристики.

№ точки

Частота вращения коленчатого вала в искомой точке скоростной характеристики, об/мин

Эффективная мощность, кВт

Эффективный удельный расход топлива,

Эффективный крутящий момент, Нм

Часовой расход топлива, кг/ч

1

780

13,5

250,8

165,4

3,4

2

1362

25

233,8

175,4

5,8

3

1944

36,9

221

181,4

8,2

4

2526

48,7

212,4

184,2

10,3

5

3108

59,8

207,9

183,8

12,4

6

3690

69,6

207,6

180,2

14,4

7

4272

77,5

211,5

173,3

16,4

8

4854

82,8

219,6

163

18,2

9

5436

85

231,9

149,4

19,7

10

6018

83,4

248,4

132,4

20,7

11

6600

77,5

269

112,2

20,8

По полученным значениям производим построение внешней скоростной характеристики.

3 Динамический расчет КШМ двигателя

3.1 Расчет сил давления газов

Сила давления газов, Н:

(3.1)

где - атмосферное давление, МПа;

, - абсолютное и избыточное давление газов над поршнем в рассматриваемый момент времени, МПа;

- площадь поршня, м2;

(3.2)

Величины снимаются с развернутой индикаторной диаграммы для требуемых ? и заносятся в сводную табл. 3.1 динамического расчета. Соответствующие им силы рассчитываются по формуле (3.1) и также заносятся в табл. 3.1

Для определения сил непосредственно по развернутой индикаторной диаграмме, а также для случая, когда на ее координатной сетке строятся графики других сил, масштаб диаграммы пересчитывается. Если кривая построена в масштабе (МПа в мм), то масштаб этой же кривой для будет:

(3.3)

3.2 Приведение масс частей кривошипно-шатунного механизма

Для упрощения динамического расчета действительный КШМ заменяется эквивалентной системой сосредоточенных масс , которая состоит из массы (кг), сосредоточенной в точке А и совершающей возвратно-поступательное движение, и массы (кг), сосредоточенной в точке В и совершающей вращательное движение:

(3.4)

(3.5)

(3.6)

(3.7)

где - масса поршневой группы;

- часть массы шатуна, приходящаяся на возвратно-поступательную движущуюся массу, кг;

- часть массы шатуна, приходящаяся на вращающуюся движущуюся массу, кг;

- часть массы кривошипа, сосредоточенной в точке В.

Для приближенного определения значений , и можно использовать конструктивные массы т' (кг/м2), т.е. массы, отнесенные к площади поршня .

Исходя из определения конструктивных масс, значения т', выбранные по справочнику, умножили на площадь (м2) для получения искомых величин т.

Таким образом, имеем:

3.3 Расчет сил инерции

Силы инерции, действующие в КШМ, в соответствии с характером движения приведенных масс подразделяются на силы инерции поступательно движущихся масс , и центробежные силы инерции вращающихся масс , Н:

(3.8)

(3.9)

где j - ускорение поршня, м/с2;

- угловая скорость вращения коленчатого вала для расчетного режима;

(3.10)

Для рядного двигателя центробежная сила инерции является результирующей двух сил:

силы инерции вращающихся масс шатуна

(3.11)

и силы инерции вращающихся масс кривошипа

(3.12)

Силы , рассчитанные для требуемых положений кривошипа (углов ?), заносятся в табл. 3.1.

3.4 Расчет суммарных сил, действующих в кривошипно-шатунном механизме

Суммарные силы, действующие в КШМ, определяют алгебраическим сложением сил давления газов и сил возвратно-поступательно движущихся масс, Н:

(3.13)

Суммарная сила , как и силы и , направлена по оси цилиндра и приложена к оси поршневого пальца . Воздействие от силы Р передается на стенки цилиндра перпендикулярно его оси и на шатун по направлению его оси.

Сила N (Н), действующая перпендикулярно оси цилиндра, называется нормальной силой воспринимается стенками цилиндра:

(3.14)

где, - угол отклонения шатуна от оси цилиндра.

Сила S (Н), действующая вдоль шатуна:

(3.15)

От действия силы S на шатунную шейку возникают две составляющие силы:

сила, направленная по радиусу кривошипа (Н)

(3.16)

тангенциальная сила, направленная по касательной к окружности радиуса кривошипа (Н):

(3.17)

Производим расчеты для всех положений коленчатого вала.

Рассчитанные для требуемых углов ? значения Р, N, S, К, Т заносятся в табл. 3.1.

3.5 Расчет сил, действующих на шатунную шейку коленчатого вала

Аналитически результирующая сила, действующая на шатунную шейку рядного двигателя, учитывается действие сил со стороны только одного из двух расположенных рядом на шейке шатунов, Н:

(3.18)

где - сила, действующая на шатунную шейку по кривошипу.

Значения вычисленные для требуемых ? , заносятся в табл. 3.1.

Таблица 3.1- Результаты вычисления сил, действующих в КШМ

?, град

?PГ, Мпа

PГ, Н

Pj, Н

P, Н

N, Н

S, Н

K, Н

T, Н

PК, Н

RШШ, Н

0

0.105

520

-12709

-12189

0

-12189

-12189

0

-19514

19514

30

-0.014

-69

-9989

-10058

-1422

-10158

-7999

-6261

-15324

16554

60

-0.014

-69

-3574

-3643

-911

-3755

-1033

-3610

-8358

9104

90

-0.014

-69

2780

2711

791

2824

-791

2711

-8116

8557

120

-0.014

-69

6355

6286

1571

6479

-4504

4658

-11829

12713

150

-0.014

-69

7209

7140

1010

7211

-6688

2696

-14013

14270

180

-0.014

-69

7149

7080

0

7080

-7080

0

-14405

14405

210

-0.0091

-45

7209

7164

-1013

7235

-6711

-2705

-14036

14294

240

-0.007

-35

6355

6320

-1580

6514

-4528

-4683

-11853

12745

270

0.14

693

2780

3473

-1013

3618

-1013

-3473

-8338

9032

300

0.42

2079

-3574

-1495

374

-1541

-424

1482

-7749

7889

330

0.84

4157

-9989

-5832

825

-5890

-4638

3630

-11963

12502

360

3.605

17841

-12709

5132

0

5132

5132

0

-2193

2193

370

7.98

39493

-12391

27102

1319

27134

26461

6005

19136

20056

390

4.2

20786

-9989

10797

1527

10904

8587

6721

1262

6838

420

1.96

9700

-3574

6126

1531

6314

1737

6071

-5588

8251

450

1.12

5543

2780

8323

2428

8670

-2428

8323

-9753

12822

480

0.56

2771

6355

9126

2281

9407

-6538

6763

-13863

15425

510

0.245

1213

7209

8422

1191

8506

-7889

3180

-15214

15543

540

0.14

693

7149

7842

0

7842

-7842

0

-15167

15167

570

0.07

346

7209

7555

-1068

7630

-7077

-2852

-14402

14682

600

0.035

173

6355

6528

-1632

6729

-4677

-4838

-12002

12940

630

0.035

173

2780

2953

-861

3076

-861

-2953

-8186

8702

660

0.035

173

-3574

-3401

850

-3506

-964

3370

-8289

8948

690

0.035

173

-9989

-9816

1388

-9914

-7807

6110

-15132

16319

720

0.035

173

-12709

-12536

0

-12536

-12536

0

-19861

19861

3.6 Построение графиков сил, действующих в кривошипно-шатунном механизме

Графики изменения сил, действующих в КШМ, в зависимости от угла поворота кривошипа ? строятся в прямоугольной системе координат по данным табл. 3.1

Построение графика (?) ведется как в прямоугольной системе координат, так и в виде полярной диаграммы с базовым направлением (полярной осью) по кривошипу.

При построении графика (?) прямоугольных координатах по расчетным данным табл. 3.1 минимальное и максимальное значения силы (а также необходимые значения в точках перегиба кривой) определяются по полярной диаграмме.

Н;

Н;

Н;

3.7 Построение диаграммы износа шатунной шейки

На основании полярной диаграммы нагрузки на шатунную шейку коленчатого вала производится построение диаграммы износа

Результирующие величины заносятся в таблицу 3.2. По их значениям определяется величина износа в определенной точке шатунной шейки. Масштабный коэффициент для построения диаграммы износа Мр = 10 кН/мм.

Таблица 3.2 - Определение суммарных сил, обуславливающих характер износа шатунной шейки.

RШШ i

Значение RШШ i (Н) для лучей

1

2

3

4

5

6

7

8

9

10

11

12

RШШ 0

19514

19514

19514

19514

19514

RШШ 30

16554

16554

16554

16554

RШШ 60

9104

9104

9104

9104

RШШ 90

8557

8557

8557

8557

RШШ 120

12713

12713

12713

12713

RШШ 150

14270

14270

14270

14270

RШШ 180

14405

14405

14405

14405

14405

RШШ 210

14294

14294

14294

14294

RШШ 240

12745

12745

12745

12745

RШШ 270

9032

9032

9032

9032

RШШ 300

7889

7889

7889

7889

RШШ 330

12502

12502

12502

12502

RШШ 360

2193

2193

2193

2193

2193

RШШ 370

20056

20056

20056

20056

RШШ 390

6838

6838

6838

6838

RШШ 420

8251

8251

8251

8251

RШШ 450

12822

12822

12822

12822

RШШ 480

15425

15425

15425

15425

RШШ 510

15543

15543

15543

15543

RШШ 540

15167

15167

15167

15167

15167

RШШ 570

14682

14682

14682

14682

RШШ 600

12940

12940

12940

12940

RШШ 630

8702

8702

8702

8702

RШШ 660

8948

8948

8948

8948

RШШ 690

16319

16319

16319

16319

282571

261498

149332

0

0

20056

20056

26894

26894

27911

191356

282571

Величина

износа, мм

28.3

26.1

14.9

0

0

2

2

2.7

2.7

2.8

19.1

28.3

3.8 Построение графика суммарного крутящего момента двигателя

Крутящий момент (Н м), развиваемый одним цилиндром двигателя в любой момент времени, прямо пропорционален тангенциальной силе Т ;

; (3.20)

где Т, Н; R, м.

При равных интервалах между вспышками в цилиндрах двигателя построение кривой (?) производится в следующей последовательности: график (?) (или Т(?) при соответствующем выборе масштаба) разбивается на число участков, равное числу цилиндров двигателя; все участки совмещаются на новой координатной сетке длиной ? и суммируются. Для четырехтактного двигателя:

?=720° /i =720/4=180° ; (3.21)

Производим расчет суммарного крутящего момента, результаты расчетов заносим в таблицу 3.3.

Таблица 3.3 - Определение суммарного крутящего момента

Угол поворота коленчатого вала, °

Крутящий момент для цилиндра, Н·м

Суммарный крутящий момент, Н·м

1

2

3

4

0

0

0

0

0

0

30

-248.56

-107.39

266.82

-113.22

-89.13

60

-143.32

-185.92

241.02

-192.07

-88.21

90

107.63

-137.88

330.42

-117.23

300.17

120

184.92

58.84

268.49

133.79

512.25

150

107.03

144.11

126.25

242.57

377.39

180

0

0

0

0

0

Принимаем масштабный коэффициент для суммарного крутящего момента:

Мр = 7,6737 (Н·м)/мм .

Производим построение графика суммарного крутящего момента. По графику определяем среднее значение суммарного крутящего момента:

; (3.22)

где F1, F2 - соответственно положительная и отрицательная площади, заключенные между кривой и линией ОА, мм2 .

Н·м.

По величине определяем эффективный крутящий момент , снимаемый с вала двигателя:

; (3.23)

Н·м.

Производим сравнение полученного значения с величиной полученной в тепловом расчете ( Н·м):

.

Заключение

В данном курсовом проекте мы систематизировал и закрепил наши знания, полученные при изучении теоретического курса дисциплины «Силовые установки транспортных средств», а также освоил методику и получил практические навыки теплового и динамического расчета автомобильного двигателя.

Литература

1. Автомобильные двигатели / Под. ред. М.С. Ховаха - М.: Машиностроение, 1977.-591с.

2. Артамонов М.Д. и др. Основы теории и конструирования автомобильных двигателей. - М.: Высш. шк., 1976. - 132 с.

3. Болтинский В.Н. Теория, конструирование и расчет тракторных и автомобильных двигателей. - М.: Сельхозиздат, 1962. - 390 с.

4. Двигатели внутреннего сгорания. Конструирование и расчет на прочность поршневых и комбинированных двигателей / Под ред. А.С. Орлина и М.Г. Круглова. -- М.: Машиностроение, 1984. - 383 с.

5. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей / Под ред. А.С. Орлина и М.Г. Круглова. - М.: Машиностроение, 1983. - 375 с.

6. Железко Б.Е. и др. Расчет и конструирование автомобильных и тракторных двигателей: Учеб. пособие для вузов. - Мн.: Вышэйшая школа, 1987. - 247 с.

7. Колчин А.И., Демидов В.П. Расчет автомобильных и тракторных двигателей:

Учеб. пособие для вузов. - М.: Высш. шк., 2003. - 496 с.

8. Попык К.Г. Конструирование и расчет автомобильных и тракторных двигателей.- М.: Высш. шк., 1968. - 389 с.

Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты