Линии железнодорожной автоматики, телемеханики и связи
p align="left">Ответвления цепей СЦБ осуществляются всегда шлейфом, при этом цепи СЦБ-ДК заводятся только на станции, остальные цепи СЦБ заводятся во все релейные шкафы светофоров и переездов на перегонах, что облегчает организацию двухстороннего движения поездов по одному из путей перегона при капитальном ремонте пути.

Схема организации связи и цепей СЦБ на перегоне А - Б показана на рис.2.

1.3 Выбор типа и ёмкости магистральных кабелей, распределение цепей по четверкам

По условию кабель будет располагаться в непосредственной близости от тяговой сети переменного тока линии ж.д. полотна, поэтому выбираем магистральный кабель с повышенным экранирующим действием оболочки. В связи с тем, что воздействие на кабель не существенное (не агрессивное), мы выбираем кабель без полиэтиленовой оболочки - МКПАБ.

МКПАБ - магистральный кабель, с кордельно-трубчатой полиэтиленовой изоляцией, с броней из стальных лент и защитным покровом из кабельной пряжи, пропитанной битумом.

Исходя из количества каналов связи выбираем кабель емкостью 7*4*1,05+5*2*0,7+1*0,7 где имеются четыре высокочастотные и три низкочастотные четверки, пять сигнальных пар и одна контрольная жила. Все жилы кабеля из меди. Диаметр жил всех четверок 1,05 мм, сигнальных пар и контрольной жилы - 0,7 мм.

Схематический разрез кабеля с алюминиевой оболочкой показан на рисунке 3.

Строительная длина кабеля 850 м. Кабель предназначен для высокочастотного уплотнения цепей в спектре до 252 кГц, аппаратурой К - 60п, применяемой на двух кабельных линиях. Предусмотрен резерв жил кабеля, включая резерв по ВЧ - четверкам.

Выбираем типовую схему распределения четверок. Для ВЧ связи используем 2, 4 и 6 четверки. При распределении цепей по четверкам учитываем, что цепи перегонной связи и поездной радиосвязи являются четырех проводными и цепь СЦБ - ДК работает в спектре тональных частот, и поэтому для неё выделяем отдельную телефонную пару.

Распределение цепей по четверкам магистральных кабелей.

Номера четверок и сигнальных пар

Тип четверок

Цепи связи и СЦБ

Кабель 1

Кабель 2

Четверки

1

2

3

4

5

6

7

ВЧ

ВЧ

НЧ

ВЧ

НЧ

ВЧ

НЧ

ПДС, ЛПС

Маг., маг.

ЭДС, ПС

маг., маг.

ПГС, ПГС

дор., дор

СЭМ, МЖС

ТУ-ТС

Маг., маг.

ДБК,ВГС

Маг., маг.

ПРС,ПРС

дор., дор

Пр-зд,СЦБ-ДК

Сигнальные пары

1

2

3

4

5

СЦБ

СЦБ

СЦБ

СЦБ

СЦБ

Резерв

---//----

---//----

---//----

---//----

Контрольная жила

1.4 Выбор трассы прокладки кабельной линии и устройство ее переходов через преграды

С целью уменьшения стоимости сооружения кабельной линии, трасса кабельной линии выбрана по наиболее короткому пути, с учетом выполнения минимального объема земляных работ, справа от ж.д. полотна, т.к. здесь расположено преобладающее число объектов связи.

Т.к. река расположена посреди перегона Г - Д судоходна, то в проект включена прокладка 2 кабелей для каждого магистрального кабеля; одного по мосту, а другого по дну реки. Подводный кабель выбран с проволочной броней, а на обоих берегах реки, в местах стыка с подземным кабелем (примерно на расстоянии 50 м от реки), монтируются разветвительные муфты. Трасса подводных кабелей отнесена от моста на расстояние 300 м.

На перегонах и в пределах небольших станций трасса кабельной магистрали проложена на минимально допустимом расстоянии, определенном на основании расчетов опасных и мешающих влияний тягового тока на кабельные цепи связи (см.п.1.7.) лишь в отдельных случаях (на больших станциях) это расстояние увеличено.

Высоковольтная линия автоблокировки расположена с правой стороны ж/д полотна, там же где проходит кабельная линия связи.

Выбранное направление трассы нанесено на схематический план кабельной магистрали с ориентировочным масштабом по горизонтали 1: 200 000 (в 1 см 2 км), и по вертикали 1: 2000 (в 1см 20 м), рис.4.

Пересечение кабельной магистралью ж/д путей выбрано с одинаковыми высотными отметками. Ширина насыпи у основания составляет: для двух путной железной дороги 11.8 м (0.6*3+10), для одно путной 7.8 м (0.6*3+6). Переходы выполнены методом горизонтального бурения с широким использованием механизации. В просверленные под основанием насыпи отверстия вставляются асбоцементные трубы, через которые протягиваются кабели: каждый кабель протягивается в отдельной трубе.

При переходе кабеля через реку основное внимание уделено защите подводных кабелей от повреждений. Для этого кабели прокладываются с заглублением в дно реки не менее чем на 1м. В местах выхода кабелей из воды берега укреплены бетонными плитами и камнем. Переход кабелей по ж/д мосту выполнен в специальном желобе. Схематический план разрезов в местах перехода трассы кабелей через ж/д пути и водные преграды приведен на рис.5.

1.5 Содержание кабеля под избыточным давлением

Наиболее часто повреждения кабеля возникают из-за проникновения в него влаги при нарушении герметичности оболочки, воздействия коррозии, механических повреждений, а также вследствие нарушения правил прокладки и недоброкачественной пайки соединительных и разветви тельных муфт.

Содержание кабелей дальней связи с металлическими оболочками под избыточным газовым давлением позволяет контролировать состояние оболочки кабеля и немедленно обнаруживать возникновение повреждения оболочки, а также служит наиболее эффективным средством, обеспечивающим надежность и бесперебойность работы кабельной магистрали. При повреждении оболочки кабеля, находящейся под газовым давлением, поток газа, проходящего через место не герметичности, препятствует проникновению влаги в кабель. В качестве газа, закачиваемого в кабель, обычно применяют сухой воздух, реже азот.

При содержании кабеля под постоянным избыточным давлением кабельную магистраль делят на герметизированные участки, называемыми газовыми станциями, длина которых, как правило равна усилительному участку ВЧ.

По концам газовой секции на магистрали, а также на всех ответвлениях от магистрального кабеля, устанавливают газонепроницаемые муфты. Внутри газовой секции создается избыточное газовое давление, которое превосходит атмосферное на . Участок считается герметичным, если установленное в кабеле избыточное давление не снижается в течении 10 суток более чем на (0,05 атм.)

Содержание кабеля под избыточным давлением будет осуществляться с помощью автоматической компрессорной сигнальной установки (АКСУ). АКСУ будут расположены на станциях: А, В, Д, Ж, З и Г.

1.6 Скелетная схема кабельной линии

На скелетной схеме кабельной линии, показанной на рис. 6, показываются расположение всех объектов связи, а также устраиваемые к ним ответвления и соединения кабелей между собой.

Выбор типа кабелей для ответвлений и в качестве кабелей вторичной коммутации обусловлен количеством необходимых пар на объекте связи. В проекте используется кабель ТЗПАБп. Низкочастотные кабели дальней связи применяют для ответвлений от магистрального кабеля. Изоляция жил полиэтиленовая пористая. Скрутка жил в группы четверочная (звездная), в общий сердечник -правильная повивная. Защитная оболочка из алюминия. Жилы всех групп в кабеле имеют одинаковый диаметр 1,2 мм, поэтому этот кабель называют однородным. Поверх алюминиевой оболочки находится полиэтиленовый шланг. Разрез кабеля показан на рис. 7.

При расчете длины кабелей было взято реальное расстояние от магистрального кабеля до объекта связи плюс дополнительный расход на изгибы при укладке в траншеях и котлованах в размере 1,6 % и отходов при спаечных работах в размере 0,6 % от расстояния по трассе.

Кроме того, учтен расход кабеля на устройство вводов, который для различных объектов связи принят в следующих пределах:

ОУП, пост ЭЦ, тяговая подстанция ---20м.

Остановочный пункт, линейно-путевое здание ---5м. Релейный шкаф сигнальной установки автоблокировки или переездной сигнализации -3м

Строительная длина кабеля марки ТЗПАБп --- 425м.

Расчетная таблица кабелей ответвлений и вторичной коммутации.

Ординат. объектов связи

Тип ответвления

Цепи ответвления вводимые

Число требуемых пар кабеля

Емкост. и марка выбран. кабеля

Раст.по трас. до объекта (м)

Доп. Расход кабеля (м)

Общая длина кабеля (м)

шлейфом

параллельно

79,350

ТП

ТУ-ТС

ЭДС, ПС

6

2по 4*4

24*2

21*2

90

80,500

РШ-Вх

ПГС, СЦБ

ПДС

15

14*4

31

4

35

82,010

РШ-С

ПГС,МЖССЦБ

---//--

16

14*4

31

4

35

82.020

ШН

ПГС

СЭМ

6

2по 4*4

74*2

4

162

82,815

П

ПГС

ЛПС

5

4*4

70

5

75

83,000

РШС

ПГС,МЖС, СЦБ

--//--

16

14*4

23

4

27

84,000

ОП

ПГС,МЖС

ПС

7

4*4

108

8

116

84,800

РШ-Вх

ПГС, СЦБ

ПДС

15

14*4

23

4

27

86,000

ПЗ

Все кроме ВЧ

ПДС

32

4 по 7*4

64*4

22*4

340

Для перегона А-Б выбираем требуемую кабельную арматуру для каждого из ответвлений и вводов магистральных кабелей, составим ее спецификацию таблица №8.

1.7 Расчет влияний тяговой сети переменного тока на кабельную линию связи

Кабельные линии связи подвергаются опасным и мешающим магнитным влияниям тяговой сети переменного тока. Цель расчета этих влияний заключается в определении такой ширины сближения кабельной линии с тяговой сетью, при которой опасное напряжение, индуцируемое в жилах кабеля, не превышало бы допускаемого нормами значения 200 В, а результирующее напряжение шума - допускаемого значения 0,9 мВ.

Расчет опасных влияний тяговой сети переменного тока.

Опасные напряжения в жилах кабеля могут возникать при аварийном (замыкании тяговой сети на землю или рельсы) и вынужденном (отключении от контактной сети одной из тяговых подстанций) режимах работы тяговой сети. Однако в целях сокращения расчетов, в курсовом проекте произведен расчет опасных влияний лишь для вынужденного режима, когда тяговая подстанция отключена, на станции Д, и тяговая подстанция, расположенная на станции А, питает все плечо тяговой сети протяженностью А-Д.

Тяговая сеть переменного тока наводит напряжение во всех жилах кабеля, однако наибольшее напряжение возникает на жилах цепей связи тональной частоты, поскольку длина сближения их с контактной сетью, определяемая длиной усилительного участка низкочастотных цепей, является наибольшей.

Опасное напряжение U, индуктируемое на изолированном конце жилы кабеля при заземленном противоположном конце (в этом случае величина напряжения максимальна), определяется вольтах по формуле:

(1)

где - круговая частота влияющего тока частотой f=50 Гц (=f=314 рад/с;

М - взаимная индуктивность между тяговой сетью и жилой кабеля при частоте 50 Гц, (Г/км) определяемая по формуле:

М= (2)

м - ширина сближения

См/м проводимость грунта

Sp=0,5 - коэффициент экранирования рельсов;

Sk=0,1 - коэффициент защитного действия оболочки кабеля на частоте 50 Гц;

lp=30 км - расчетная длина сближения кабельной цепи связи тональной частоты с тяговой сетью (соответствует расстоянию от начала цепи (ст.А) до ближайшего промежуточного усилителя тональной частоты);

- эквивалентный влияющий ток частотой 50 Гц, (А), определяемый при вынужденном режиме работы тяговой сети по формуле:

(3)

- результирующий нагрузочный ток расчетного плеча питания при вынужденном режиме работы тяговой сети, (А);

(4)

В - максимальная потеря напряжения в тяговой сети между подстанцией и максимально удаленным электровозом при lэ>30 км, (В)

Lэ=50 км - длина плеча питания тяговой сети при вынужденном режиме работы;

Rmс, Хmc - соответственно активное и реактивное сопротивление тяговой сети, Ом/км (величины Rmс и Хmc принимаются равными 0,12 и 0,48 Ом/км);

- коэффициент мощности электровоза, составляющий 0,8;

m - количество поездов, одновременно находящихся в пределах плеча питания тяговой сети при вынужденном режиме (принимаем для двух путной дороги m=12);

Кm - коэффициент, характеризующий уменьшение влияющего тока по сравнению с нагрузочным (I рез)

(5)

=0,9 км - расстояние от тяговой подстанции до начала цепи связи (соответствует расстоянию между тяговой подстанцией ст.А и ОУП).

Г/км

А

А

В

168.206 < 200 В - что удовлетворяет требованиям.

Расчет мешающих влияний на кабельные цепи связи.

Расчет мешающих влияний на кабельные цепи связи производится при нормальном режиме работы тяговой сети переменного тока.

Наиболее простым методом расчета мешающего напряжения является приближенный метод по одной (определяющей) гармонической составляющей переменного тягового тока, которая наводит в телефонных цепях тональной частоты наибольшее напряжение шума.

Частота определяющей гармоники fвл =1150 Гц, ее влияющий ток Iк=1,0 А.

При наличии в цепи избирательной связи промежуточных усилителей напряжение шума в этой цепи рассчитывается отдельно для каждого усилительного участка, а результирующее напряжение шума Uшр в начале цепи определяется по формуле;

(6)

где Uш - напряжение шума, наводимое на одном усилительном участке, мВ;

n- число усилительных участков цепи.

Напряжение шума, наводимое в двух проводной телефонной цепи на отдельном участке, определяется в мВ, следующим соотношением:

(7)

где - круговая частота определяющей k-й гармоники тягового тока, рад/c

рад/с

- взаимная индуктивность между контактным проводом и жилой кабеля на частоте к-й гармоники, Г/км, определяемая по формуле (2);

= 1,03 - коэффициент акустического воздействия к-й гармоники;

- коэффициент чувствительности телефонной цепи к помехам;

- коэффициент экранирующего действия оболочки кабеля для к-й гармоники тягового тока;

Г/км

мВ

n - принимаем равным 4

мВ

Значение Ump=0.809<0.9, что удовлетворяет требованиям.

2. Сметный расчет кабельной магистрали

Сметная стоимость строительства кабельной магистрали на участке А-К определяется с учетом затрат на производство строительных (земляных) работ, стоимости самого кабеля и расходов на его монтаж.

Смета на строительство линии связи на участке А-К.

Наименование работ

Единица измерений

количество

Стоимость, руб.

единичная

общая

А. Кабельная линия

1.земляные работы

траншеи для прокладки 2 шт. бронированных кабелей на глубине до 1,2 м. разрабатываемые механич. способом.

Км.трассы

7

4380

30660

Переход под железными дорогами

Один переход одной трубой

14

1380

19320

Монтажные работы

Кабель связи с жилами диаметром до 1,2 мм в готовых траншеях при емкости: МКПАБ7х4х1,05+5х2х0,7+1х0,7

ТЗПАБп 4х4х1,2

ТЗПАБп 7х4х1,2

ТЗПАБп 14х4х1,2

км

км

км

км

7х2=14

0,286

0,34

0,124

2520

2130

2520

3460

35280

609,18

856,8

429,04

итого

87150,02

Б. Стоимость кабелей по маркам

МКПАБ7х4х1,05+5х2х0,7+1х0,7

ТЗПАБп 4х4х1,2

ТЗПАБп 7х4х1,2

ТЗПАБп 14х4х1,2

Км

Км

Км

км

14

0,286

0,34

0,124

21800

10650

1360

21400

305200

3045,9

462,4

2653,9

итого

311361,9

Плановые накопления по пункту Б

%

6

18681,714

Итого по пунктам А и Б

руб

407538,634

Начисления от А и Б

%

10

40753,8634

Всего по смете

руб

448292,5

Стоимость 1 км кабельной линии

руб

Стоимость строительства кабельной линии на участке А-К

руб

6404179

Использованная литература

1. Л.Н. Козлов, В.И. Кузьмин “Линии автоматики, телемеханики и связи на железнодорожном транспорте”. М.: Транспорт, 1981 г.

2. И.М. Зотов “Пособие электромеханику и электромонтеру по кабельным работам”. М,: Транспорт, 1976 г.

3. В.И. Калебин, Ф.П. Микулик “Линии железнодорожной автоматики, телемеханики и связи. Задание на курсовой проект”. М,: ВЗИИТ

Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты