Шпаргалки по метрологии (2007г. Томск)

Шпаргалки по метрологии (2007г. Томск)

1. Классификация измерений. Прямые, косвенные, совместные, совокупные.

Измерение- нахожд.знач. ФВ опытным пустеем с помощью спец.тех.средств.

Измерение имеет ряд хар-к: Принцип изм., Метод изм., Качество изм.(Точность, Сходимость, Правильность, Погрешность, достоверность, воспроизведение)

Классификация измерений:

1.по хар-ке точности – равноточные, неравноточные;

2.по числу изм. –однократные, многократные;

3.по отношению к изменению изм.В- статические, динамические;

4.по метрологическому назначению – технические(не связанные с передачей ФВ), метрологические(связанные с передачей размера ФВ)

5.по выражению результата измерений- абсолютные, относительные;

6.по приемам получения результата - Прямые, косвенные, совместные, совокупные.

ПРЯМОЕ ИЗМЕРЕНИЕ

Измерение проводимое прямым методом, при котором искомое значение ФВ получают непосредственно из опытных данных.

КОСВЕННОЕ ИЗМЕРЕНИЕ

Измерение, проводимое косвенным методом, при котором искомое значение ФВ определяют на основании результатов прямых измерений других ФВ (аргументы), функционально связанных с искомой величиной (известная функциональная зависимость).

Во многих случаях вместо термина "косвенное измерение " применяют термин "косвенный метод измерения".

СОВОКУПНЫЕ ИЗМЕРЕНИЯ

Проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях различных сочетаний этих величин.

СОВМЕСТНЫЕ ИЗМЕРЕНИЯ

Проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.


2. Классификация методов измерения. Метод непосредственной оценки и метод сравнения с мерой.

Принцип измерения- физ.явл. на которомосновано взаимодействие СИ с объектом измерения.

Методом измерения наз.совокупность приемов сравнения изм.ФВ с ее единицей.

Классификация:

1.по физ.принципу- электрические, магнитные, акустические, механические, оптические..

2.по режиму взаимод. СИ с единицей.изм: статические и динамические.

3.по виду изм.сигналов: аналоговые и цифровые.

4.по совокупности приемов:

-метод непосредственной оценки, знаечние ФВ опред.непосредственно подсчетному устр-ву прибора.

-метод сравнения с мерой, изм.В сравниваемс образцовой В меры:

а)противопоставление, изм.В и мера одновременно воздействует на прибор сравнения с помощью которого устанав.соотношение м/у ними.

б)дифференциальный, на прибор воздействует разность измеряемой и образцовой.

в)нулевой, действие изм.В на прибор полностью уравновешивается образцовой.

г)замещение, изм.В последовательно во времени замещают образцовой, изменяя ее до того же показания прибора, которое было при изменение не известной В.

д)совпадение, изм.В определяют по совпадению разметок шкал или периодических сигналов.

е)дополнения, значение изм.В дополняется образцовой, с таким расчетом, чтобы на прибор воздействовала их сумма, равная заранее заданному значению.


3. Классификация средств измерения. Их характеристики.

Для реализации любого вида измерений необходимы специальные технические средства – средства измерений.

1)Классификация по роли вып-й в системе обеспечения ед-ва измерений:

Метрологические СИ(учавствуют в передачи размерности единицы) и рабочие СИ.

2)По уровню автоматизации: неавтоматические, автоматизированные, автоматические.

3)По уровню стандартизации: стандартизованные и нестандартизованные.

4)По отношению к изм.ФВ: основные и вспомагательные.

5)Классификация по функциональному назначению: Меры ФВ(СИ, пред.для воспроизведения ФВ зад.величины), Средства сравнения(компоратор, СИ длясравнения 2-х однородных величин), Измерительные преобразователи(СИ предназ.для выр.сигнала изм.инф-ии в форме, удобной для передачи дальн.преобразования, обр-ки и хран-я, но непод.непоср.воспр.), Измерительные приборы(СИ, предназнач.для выр-я сигнала в форме цдобной для человека), Измерительные установки(Совместимость функцион.объед-х СИ и вспомогательных устр-в, располож.в одном месте, и предназ-х для выполнения массовых технологических изм.), Измерительные системы(Совместимость функционально объед. изм., выч. и вспомогательных средств для получения измерительной информации, ее преоб-я и обработки с целью представления потребителю в требуемом виде, либо автомат. осуществляя ф-й контроль, значения, идентификации).

Меры, измерительные преобразователи и средства сравнения называют элементарными СИ. Они позволяют реализовать отдельные операции прямого измерения.

Все остальные СИ наз.комплексными. Они позволяют реализовать всю процедуру измерения.

Хар-ки СИ.

Метрологические:

1.Ф-я преобразования(статич.хар-ка преобразования) у=F(x)

2.Чувствительности СИ /S= Δ y/Δx при Δx->/ -абс

/Sот= Δ y/Δx/x / - относит.              

3.Постоянная прибора C=1/S

4.Порог чувствительности(наим. Изсенение измВ, которое вызывает видимое измен вых. Сигнала)

5.Предел чувствительности(мин.В входного сигнала, обесп-я норм.рапотоспособность прибора). 

6.Диапозон изм-й(обл-ть зн-ий изм-й величины, для кот.нормированы допускаемы погрешности СИ) Область значение м/у max и min значениями наз-ся диапозоном показаний, а само max значение – пределом шкалы.

7.Обл-сть рабочих частот(диапазон частот)

8.Цена деления шкалы.

9.Разреш-ся способность – мин.разность двух значений ФВ, которая м.б. различима

10.Входное полное сопротивление.

11.Выходное полное сопротивление.

12.Быстродействие хар-т скорость изм-й: макс.число измерений в единицу t.

13.Погрешности.

Не метрологические хар-ки: Вес, габариты, напрежения питания и др.

 


4.Классификация погрешностей.

Действительные значения ФВ – найденное экспериментальным путем и настолько близкое к истинному значению, что для поставленной истинной задачи может его заменить.

Классификация:

1)по способу выражения:

а) абсолютная Δ= Хизм- Хист

б) относительная δ= Δ/Хист*100%

в) δпр – приведенная относительная погрешность δпр= Δ/Хнормир.= Δ/Хшк*100%

2)по природе возникновения:

а)методическая, обусловлена упрощениям допущения при выборе модели измерения, несовершенства метода.

б)инструментальная(приборная, аппаратурная)-погрешность установки.

в)внешняя погрешность(за счет влияющих факторов)

г)субъективная или личностная погрешность. Ошибки оператора при отсчете показания. Отсутствие цифровых приборов.

д)погрешность вычисления.

3)В зависимости от поведения изм.В во времени различают погрешности.

4)По условию измерения СИ:

а) основная погрешность СИ, при нормальных условиях эксплуатации, влияющие величины лежат в нормальных границах.

б)дополнительная погрешность, при выходе влияющей величины за пределы нормали.

Погрешность сил в реальных условиях наз.рабочей.

5)По хар-ру зависимости о т изм.В: адьетивную(не зависит от ИВ) и мультипликативную(зависит)

6) По хар-ру проявления:

а)систематические, которые остаются не изменными. Могут быть предсказаны, определенны и устранены. Хар-ет првильность результата.

б)случайные, при повторном измерение одной и той же велечины, изменяется случ. В виде разброса. Хар-ет сходимость результата.

в)грубые погрешности(промахи) погрешность, величина которой существенно превосходит погрешность условленной экспериментом. Промахи выбрасывают из результата. Промахи влияют на годность измерений.


5. Систематические погрешности. Методы обнаружения, методы исключения.

Классификация:

1. По хар-ру изменения во времени:

-постоянные

-переменные

А)монотонно-изменяющиеся

Б)периодические

В)прогрессирующие(дрейфовые)

2.По источнику:

-методические(опред. Путем анализа метода измерения)

-инструментальные

-личностные

Методы устранения:

-Устранение источников погрешности до начала имерения(профилактика)

-Внесение поправок в результат измерения. Результат изм., сод. Систематическую погрешность наз неисправленным. Если же погрешность устранена, то результат исправленный

Хизм=(х+ Δx)+а,  а= - Δx – поправка

-Исключение погрешности в процессе измерения(коррекция)

Понятие несключенного остатка систематической погрешности(НСП)

Δx+- Δ Δсист 

В рез-те измерения всегда есть НСП. Обозначается θ.

Сама НСП носит детерминированный хар-р, но в дальнейшем обрабатывается по правилам случ.величин.


6.Случайные погрешности. Законы распределения, точечные оценки.

F(x)=P(x<X). Интегральный закон 

F’(x)=p(x)        

              дифференциальный закон


P(a<x<b)=∫p(x)dx


∫p(x)dx=1


Начальный момент

Ls[x]= ∫ xsp(x)dx

1)M[x]= ∫ xp(x)dx

Мат.ожидание-фигуры: 

Величина мат.ожидания – сист.погрешность

2) Мs[x]= ∫ (x-м)sp(x)dx – центральный момент


D[x]=G2=∫ (x-м)2p(x)dx

G- средне-квадратическое отклонение(СКО)

3) Sk=M3/G3 харак-ет ассиметрию закона распределения


4) Эксцесс

E=(M4/G4) – 3 хар-ет островершиность

Контрэксцесс e=1/^E


5) Квантиль Хр

Значение случ.величины для которой вероятность р


6)коэффициент корреляции

rij=kji/GiGj

             -1<r<1

Законы распределения случ. Погрешностей

  1. Равномерный


2. Трапециадальный

Хар-ет закон распределения двух величин с равномерным законам, но в разных границах.

3. Закон Симпсона(треугольный закон распределения)

Хар-ет сумму двух составляющих, кот.распределены равномерными законами в одних интервалах.


4. Лапласа

 

5. Арксинусоидальный

6. Закон Гаусса (нормальный закон распределения)



7. Статистические оценки случайных погрешностей. Определение доверительных интервалов погрешностей.

При n неравной бесконечности мат.ожидание не точно определяется.

Оценки:

1.max значение погрешности

2. G- СКП

3. Интервальная (квантильная) оценка – значение погрешности Е с заданной доверительной вероятностью, как границ интервала на протяжение которого встречается Рд всех возможных значений погрешности.

P(|Δx|<E) = Pд

(Хизм-Е)<Xист<(Хизм+Е)

Е=tPдG

Для нормальных изм Рд=0,9

Для радиоэл-х Рд=0,95


Определение доверительного интервала случайных погрешностей.

 

Для нормального з-на

=F(E)-F(-E)                t=E/G


Рд=Ф(E/G)-Ф(-E/G)=Ф(t)-Ф(-t)=2Ф(t)


tн=Ф-1(Рд/2) ->tн(Рд)

Рд=0,9, tн=1,643

Рд=0,95, tн=1,96

Рд=0,975, tн=2,247


Eрд = tн(Рд)*S

X – распределение ср.ариф-го, рассчитанного по конечной выборке из нормально распределений генеральной совокупности наз. Распределение Стьюдента.

ts(Рд,n)

Ex=ts*Sx= ts(Рд,n)S/^n

При n больших, tn=ts.

При малых n tn и ts сильно различаются, если n>=30-40 tn=ts.


8. Погрешности СИ, их нормирование. Классы точности СИ.

ΔХси=Хси-Хдст

ΔХмеры=Хм.ном-Хм.дст

(Хм.ном-номинальное знаечние меры;

Хм.дст-дейст.знаечние ФВ, воспроиз.мерой)

Нормирование погрешности рабочих СИ производится по пределу суммы сист. и случ. Погрешности.

Классы точности – одна един.цифра в % хар-ет погрешность прибора.

9. Определение результата и погрешности косвенных измерений.

Y=F(x1,x2..xn)

Δyсист=

Δi=Δiсист+Δiсл

10. Обработка результатов прямых равноточных измерений. Идентификация закона распределения случайных чисел. Критерий Пирсона.


11.Правила суммирования погрешностей.(НСП и случайные погрешности)

1) суммирование систематических погрешностей.

M[x+y+z]=M[x]+M[y]+M[z]


,

Где k(0,9)=0,95, k(0,95)=1.1, k(0,99)=1,4

-по равновероятному з-ну СКП

2)Случайные погрешности

Для зависимых

rij=+1 , S=S1+S2

rij=-1, S=S1-S2

Для независимых:

rij=0,

Ei -> tiSi ->Si=Ei/ti, а потом суммирование по общим правилам.

EΣ=tΣ-SΣ, если Рд=0,9 tΣ=1,6; Рд=0,95, tΣ =1,8


3)Сумма случайных и систематических погрешностей

Если отношение , то определяется

а    

(НСП принебригают)


:    

(случ.погр. принебригают)


Если, , где

  ,


12.Сигналы измерительной информации.

Сигнал функционально связывающий с измеряемой ФВ, наз.сигналом измерительной информации.

1. Непрерывный по информативному параметру и по времени.

-амплитудная модуляция АМ

-частотная ЧМ

-фазовая ФМ

2. Непрерывная по инф-му пар-ру и дискретна во времени.

АИМ, ЧИМ, ШИМ

3.Непрывные по времени, квантованные по инф.парам.

4.Квантованные по инф.парам и дискретные по времени

Кодоимпульсные сигналы.

Представление сигналов.

1. Временное представление

U(t)=Um*Sinωt

y(t)=

2. Спектральные пр-е

y(t)=A0+ - ряд Фурье для периодических сигналов

Амплитудный спектр:

Фазовый спектр:


13.Электромеханические приборы – магнитоэлектрической системы, электромагнитной, электромеханической систем, электростатической системы. Принцип действия, уравнения шкалы, области применения, условные обозначения на шкале.

Аналоговыми наз. Приборы, показания которых являются непрерывной ф-ей измерений величины.

э/мех приборы состоят:

-измерительная цепь

-измерит.мех-зм

-отсчетное устр-во

-вспомогательное устр-во(успокоитель,корректор, арретир)

Изм.мех-м преобразует энергию э/маг поля в поворот вращающийся части прибора.

Мвр=dWэм/dα – вращающийся момент

Мпр=W*α – противодействующий момент.

Логометр – прибор, в котором противодействующий момент созд.электр.полем.

Вспомогательное уст-во: Успокойтель гасит колебания стрелки. Арретир – только в гальванометрах, не позволяет им выходить из строя.

1. магнитоэлектрическая  система

Вращающийся момент возникает в результате взаимодействия магн.поля простого магнита и магнитного поля катушки с током.

Достоинства:

-высокая чувствительность до нА

-высокая точность

-малое собственное потребление жнергии

-слабое влияния внеш.полей

-низкая температурная погрешность

-линейная и стаб-я хар-ка преобрпзования.

Недостатки:

-малая перегрузочная способность по току.

-сложность, дороговизна.

Применение:

Основной прибор(индикатор) в электронных СИ.

Гальвонометры, Логометры

2.Электромагнитная система.

Вращающийся момент за счет взаимодействия одного или нескольких ферромагнитных сердечников подвижной части и магнитного поля неподвижной катушки.

Достоинства:

-простота констукции

-способность выдерживать высокие нагрузки и перегрузки

-измер и пост.и переем.ток

-дешевизна

-надежность

Недостатки:

-низкая чувствительность

-малая точность

-сильное влияния внеш.полей

Применение: основная часть счетовых приборов. Для измерения токов, напряж-й, частот, фаз и тп.

3. Электромеханическая система

Вращ.момент за счет взаимодействия магнитных полей неподвижной и подвижной катушки.

Достоинства:

-достаточно точны

-изм. Постоянный и переменные токи до 10кГц

-высокая стабильность св-в

Недостатки:

-низкая чувствительность

-влияния внешних полей

-сложность в изучение

-мала перегрузная способоность

Применение: Для изм-я пост/перем токов и напр-й, мощ-ти, разности фаз и тд.

4.Электростатические

Вращающий момент за счет взаимод-я 2-х систем зар-х проводников, один из кот-х неподвижный, а другой подвиж.

Силы взаимодействия э/с полей в порядки раз меньше, чем у э/м полей.

Достоинства:

-малое собственное потреб-е

-слабая чувст-ть к частоте и форме напр-я

-возм-ть измерения выс-х напр-й до 100 кВ

Недостатки:

-малая чувствительность

-сильное влияние внеш.полей

Применение: для изм-й напр-й в диапозоне частот до 100 кГц и до 100 кВ.


14.Электромеханические приборы с преобразователями – выпрямительные и термоэлектрические. Принцип действия, дост и недост, применение.

а)выпрямительные приборы, выполнены чаще всего на полупроводниковых диодах, исп. Однополупериодные и двух-полупериодные.

Достоинства:

-работает с любыми пер-ми токами и напр-ми.

-диапазон частот до ГГц

Недостатки: Маленький

б) термоэлектрический

Достоинства: высокая точность в изм-м диапозоне частот при любой форме сигнала.

Недостатки:

-малая перегру-я спос-ть

-зависимость показ.от температуры окр.ср.

-ограниченный срок службы.


15. Классификация цифровых измерительных устр-в. Основные хар-ки цифр.уст-в.

Цифр.изм.прибором наз.прибор автоматически вырабатываемый дискретные сигналы измерит. инф-ии, показания кот-го представлены в цифровой форме.

Процесс, включающий в себя дискретизацию, квантование и кодирование вх-й величины наз.аналого-цифровым преобразованием.


16. Вольтметры постоянного напряжения. Компенсаторы.



17. Вольтметры переменного напряжения. Классификация. Обобщенные структурные схемы. Виды детекторов.

1) прямого преобразования

U(t)àПà УПТà ИМ

U(t)à Упà Пà ИМ

Напряжение измеряется путем преобразования его в постоянное напряжение.

Преобразователи переменного тока в постоянный существует 3 вида детектора:

Um(амплитудный), Uср.в(средневыпрямленное значение), Uд(среднеквадратичное значение)


2)уравновешенные преобразования


ВУ содержит делитель, ПОС- преобразователь цепи обратной связи




18. Влияния формы кривой напряжения на показания вольтметра переменного тока.

U(t)àД àШкала

Uш*0,707 = Ап1

Uср.в.*1,1=Ап2

U*1=Ап3


Um=max(U(t))

C1*Ums=Us

C2*Uср.вs=Us

C3*Us=Us

C1,C2,C3- градуирующий коэффициент

С1=Us/Ums=1/Kas=1/^2=0,707

C2=Us/Uср.вs=Kфs=1,11

U(t)àЭл.цепьàV


19. Цифровые вольтметры с время импульсным преобразованием.

В основу работы цифровых вольтметров постоянного тока с время-импульсным преобразованием положен время-импульсный метод преобразования постоянного напряжения в пропорциональный интервал времени с последующим измерением длительности интервала цифровым способом. Структурная схема вольтметра



Измеряемое напря­жение подаётся на входное устройство, в котором напряжение приводится к некоторому номинальному пределу с помощью делителя напряжения и далее поступает на усилитель постоянного тока. В усилителе оно усиливается до величины, не превышающей максимального уровня сигнала генератора ли­нейно-изменяющегося напряжения (ГЛИН), чтобы обеспечить сравнение этих напряжений. Запуск схемы осуществляется управляющим устройством, им­пульсы которого одновременно производят сброс счетчика перед каждым из­мерением и срабатывание формирователя измерительных импульсов. Работа цифровой части вольтметра поясняется временными диаграммами:

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты