Физические основы электроники
p> Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют режимом отсечки (РО), так как в этом случае через переходы протекают малые обратные токи.

Следует подчеркнуть, что классификация режимов производится по комбинации напряжений переходов, В схеме включения с общей базой (ОБ) они равны напряжениям источников питания UЭБ и UКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напряжением первого источника (UЭБ = -UБЭ), а напряжение коллекторного перехода зависит от напряжений обоих источников и по общему правилу определения разности потенциалов UКБ = UКЭ + UЭБ. Так как UЭБ = -UБЭ, тo UКБ = UКЭ - UБЭ; при этом напряжение источников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и отрицательным - в другом случае. В схеме включения с общим коллектором
(ОК) напряжение на коллекторном переходе определяется одним источником: UКБ
= -UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ
= UЭК + UКБ = UЭК - UБК, при этом правило знаков прежнее.

3.1.2 Физические процессы в бездрейфовом биполярном транзисторе при работе в активном режиме.

Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы с общей базой (рисунок 3.4), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока.

В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение UЭБ. Поэтому прямой ток перехода

[pic] , (3.1) где Iэ р, Iэ n - инжекционные токи дырок (из эмиттера в базу) и электронов
(из базы в эмиттер), а Iэ рек - составляющая тока, вызванная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера. Относительный вклад этой составляющей в ток перехода Iэ в (3.1) тем заметнее, чем меньше инжекционные составляющие
Iэр и Iэn, определяющие прямой ток в случае идеализированного р-n перехода.
Если вклад Iэ рек незначителен, то вместо (3.1) можно записать

[pic]. (3.2)

Полезным в сумме токов выражения (3.1) является только ток Iэ р, так как он будет участвовать в создании тока коллекторного перехода. “Вредные” составляющие тока эмиттера Iэ n и Iэ рек протекают через вывод базы и являются составляющими тока базы, а не коллектора. Поэтому вредные компоненты Iэ n, Iэ рек должны быть уменьшены.

Эффективность работы эмиттерного перехода учитывается коэффициентом инжекции эмиттера

[pic], (3.3) который показывает, какую долю в полном токе эмиттера составляет полезный компонент. В случае пренебрежения током Iэ рек

[pic]. (3.4)

Коэффициент инжекции (Э "тем выше (ближе к единице), чем меньше отношение Iэ n/ Iэ р. Величина Iэ n/ Iэ р > NДБ). Это условие обычно и выполняется в транзисторах.

Какова же судьба дырок, инжектированных в базу из эмиттера, определяющих полезный ток IЭр? Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентрации дырок - неосновных носителей базы. Этот градиент обусловливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться рекомбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок IБ рек, так что ток подходящих к коллекторному переходу дырок

[pic]. (3.5)

Относительные потери на рекомбинацию в базе учитывают коэффициентом переноса:

[pic]. (3.6)
Коэффициент переноса показывает, какая часть потока дырок, инжектированных из эмиттера в базу, подходит к коллекторному переходу. Значение (Б тем ближе к единице, чем меньшее число инжектированных дырок рекомбинирует с электронами - основными носителями базовой области. Ток IБ рек одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покрывается за счет прихода электронов через вывод базы из внешней цепи, то ток IБ рек следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭ n.

Чтобы уменьшить потери на рекомбинацию, т.е. увеличить (Б, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации доноров Nд Б. Это совпадает с требованием NАЭ/NДБ, необходимым для увеличения коэффициента инжекции.
Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы
WБ и диффузионной длины дырок в базовой области Lp Б. Доказано, что имеется приближенное соотношение

[pic]. (3.7)

Например, при WБ/Lp Б = 0,1 (Б = 0,995, что очень мало отличается от предельного значения, равного единице.

Если при обратном напряжении в коллекторном переходе нет лавинного размножения проходящих через него носителей, то ток за коллекторным переходом с учетом (3.5)

[pic] (3.8)

С учетом (3.6) и (3.3) получим

[pic], (3.9) где

[pic] [pic] . (3.10)

Это отношение дырочной составляющей коллекторного тока к полному току эмиттера называет статическим коэффициентом передачи тока эмиттера.

Ток коллектора имеет еще составляющую IКБО, которая протекает в цепи коллектор - база при IЭ = 0 (холостой ход, “обрыв” цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехода, создаваемый неосновными носителями областей базы и коллектора, как в обычном p-n переходе (диоде).

Таким образом, полный ток коллектора с учетом (3.8) и (3.10)

[pic]. (3.11)

Из (3.11) получим обычно используемое выражение для статического коэффициента передачи тока:

[pic], (3.12) числитель которого (IК - IКБО) представляет собой управляемую (зависимую от тока эмиттера) часть тока коллектора, IКр. Обычно рабочие токи коллектора
IК значительно больше IКБО, поэтому

[pic]. (3.13)

С помощью рисунка 3.4 можно представить ток базы через компоненты:

[pic]. (3.14)

По первому закону Кирхгофа для общей точки

[pic]. (3.15)

Как следует из предыдущего рассмотрения, IК и IБ принципиально меньше тока IЭ; при этом наименьшим является ток базы

[pic]. (3.16)

Используя (3.16) и (3.11), получаем связь тока базы с током эмиттера

[pic]. (3.17)

Если в цепи эмиттера нет тока (IЭ = 0, холостой ход), то IБ =
-IКБО, т. е. ток базы отрицателен и по величине равен обратному току коллекторного перехода. При значении I*Э = IКБО /(1-() ток IБ = 0, а при дальнейшем увеличении IЭ (IЭ>I*Э) ток базы оказывается положительным.

Подобно (3.11) можно установить связь IК с IБ. Используя (3.11) и
(3.15), получаем

[pic], (3.18) где

[pic] (3.19)
- статический коэффициент передачи тока базы. Так как значение ( обычно близко к единице, то ( может быть очень большим ((>>1). Например, при ( =
0,99 ( = 99. Из (3.18) можно получить соотношение

[pic]. (3.20)
Очевидно, что коэффициент ( есть отношение управляемой (изменяемой) части коллекторного тока (IК - IКБО) к управляемой части базового тока (IБ +

IКБО).

Все составляющие последнего выражения зависят от IЭ и обращаются в нуль при IЭ = 0. Введя обозначение

[pic], (3.21) можно вместо (3.18) записать

[pic]. (3.22)

Отсюда очевиден смысл введенного обозначения IКЭО: это значение тока коллектора при нулевом токе базы (IБ = 0) или при “обрыве” базы. При IБ = 0

IК = IЭ, поэтому ток IКЭО проходит через все области транзистора и является
“сквозным” током, что и отражается индексами “К” и “Э” (индекс “О” указывает на условие IБ = 0).

3.2 Статические характеристики биполярных транзисторов

Обычно анализируют входные и выходные характеристики БТ в схемах с общей базой и общим эмиттером. Для определенности и преемственности изложения будем рассматривать p-n-p-транзистор.

3.2.1 Схема с общей базой

Семейство входных характеристик схемы с ОБ представляет собой зависимость IЭ = f(UЭБ) при фиксированных значениях параметра UКБ - напряжения на коллекторном переходе (рисунок 3.5,а).

[pic]
|а) |б) |
|Рисунок 3.5 Входные (а) и выходные (б) характеристики БТ в |
|схеме включения с ОБ |

При UКБ = 0 характеристика подобна ВАХ p-n-перехода. С ростом обратного напряжения UКБ (UКБ < 0 для p-n-p-транзистора) вследствие уменьшения ширины базовой области (эффект Эрли) происходит смещение характеристики вверх: IЭ растет при выбранном значении UЭБ. Если поддерживается постоянным ток эмиттера (IЭ = const), т.е. градиент концентрации дырок в базовой области остается прежним, то необходимо понизить напряжение UЭБ, (характеристика сдвигается влево). Следует заметить, что при UКБ < 0 и UЭБ = 0 существует небольшой ток эмиттера IЭ0, который становится равным нулю только при некотором обратном напряжении
UЭБ0.

Семейство выходных характеристик схемы с ОБ представляет собой зависимости IК = f(UКБ) при заданных значениях параметра IЭ (рисунок
3.5,б).

Выходная характеристика p-n-p-транзистора при IЭ = 0 и обратном напряжении |UКБ < 0| подобна обратной ветви p-n-перехода (диода). При этом в соответствии с (3.11) IК = IКБО, т. е. характеристика представляет собой обратный ток коллекторного перехода, протекающий в цепи коллектор - база.

При IЭ > 0 основная часть инжектированных в базу носителей (дырок в p- n-p транзисторе) доходит до границы коллекторного перехода и создает коллекторный ток при UКБ = 0 в результате ускоряющего действия контактной разности потенциалов. Ток можно уменьшить до нуля путем подачи на коллекторный переход прямого напряжения определенной величины. Этот случай соответствует режиму насыщения, когда существуют встречные потоки инжектированных дырок из эмиттера в базу и из коллектора в базу.
Результирующий ток станет равен нулю, когда оба тока одинаковы по величине
(например, точка А' на рисунок 3.5,б). Чем больше заданный ток IЭ, тем большее прямое напряжение UКБ требуется для получения IК = 0.

Область в первом квадранте на рис. 3.5,б, где UКБ < 0 (обратное) и параметр IЭ > 0 (что означает прямое напряжение UЭБ) соответствует нормальному активному режиму (НАР). Значение коллекторного тока в НАР определяется формулой (3.11) IК = (IЭ + IКБО. Выходные характеристики смещаются вверх при увеличении параметра IЭ. В идеализированном транзисторе не учитывается эффект Эрли, поэтому интегральный коэффициент передачи тока
( можно считать постоянным, не зависящим от значения |UКБ|. Следовательно, в идеализированном БТ выходные характеристики оказываются горизонтальными
(IК = const). Реально же эффект Эрли при росте |UКБ| приводит к уменьшению потерь на рекомбинацию и росту (. Так как значение ( близко к единице, то относительное увеличение а очень мало и может быть обнаружено только измерениями. Поэтому отклонение выходных характеристик от горизонтальных линий вверх “на глаз” не заметно (на рисунке 3.5,б не соблюден масштаб).

3.2.2 Схема с общим эмиттером

Семейство входных характеристик схемы с ОЭ представляет собой зависимости IБ = f(UБЭ), причем параметром является напряжение UКЭ (рисунок
3.6,а). Для p-n-p транзистора отрицательное напряжение UБЭ (UБЭ < 0) означает

[pic]
|а) |б) |
|Рисунок 3.6 Рисунок 3.5 Входные (а) и выходные (б) |
|характеристики БТ в схеме включения с ОЭ |

прямое включение эмиттерного перехода, так как UЭБ = -UБЭ > 0. Если при этом UКЭ = 0 (потенциалы коллектора и эмиттера одинаковы), то и коллекторный переход будет включен в прямом направлении: UКБ = UКЭ + UЭБ =
UЭБ > 0. Поэтому входная характеристика при UКЭ = 0 будет соответствовать режиму насыщения (РН), а ток базы равным сумме базовых токов из-за одновременной инжекции дырок из эмиттера и коллектора. Этот ток, естественно, увеличивается с ростом прямого напряжения UЭБ, так как оно приводит к усилению инжекции в обоих переходах (UКБ = UЭБ) и соответствующему возрастанию потерь на рекомбинацию, определяющих базовый ток.

Вторая характеристика на рисунке 3.6,а (UКЭ (0) относится к нормальному активному режиму, для получения которого напряжение UКЭ должно быть в p-n-p транзисторе отрицательным и по модулю превышать напряжение
UЭБ. В этом случае (UКБ = UКЭ + UЭБ = UКЭ - UБЭ < 0. Формально ход входной характеристики в НАР можно объяснить с помощью выражения (3.14) или (3.17):
IБ =(1 - ()IЭ - IКБО. При малом напряжении UБЭ инжекция носителей практически отсутствует (IЭ = 0) и ток IБ = -IКБО, т.е. отрицателен.
Увеличение прямого напряжения на эмиттерном переходе UЭБ = -UБЭ вызывает рост IЭ и величины (1 - () IЭ. Когда (1 - () IЭ = IКБО, ток IБ = 0. При дальнейшем роете UБЭ (1 - () IЭ > IКБО и IБ меняет направление и становится положительным (IБ > 0) и сильно зависящим от напряжения перехода.

Влияние UКЭ на IБ в НАР можно объяснить тем, что рост |UКЭ| означает рост |UКБ| и, следовательно, уменьшение ширины базовой области (эффект
Эрли). Последнее будет сопровождаться снижением потерь на рекомбинацию, т.е. уменьшением тока базы (смещение характеристики незначительно вниз).

Семейство выходных характеристик схемы с ОЭ представляет собой зависимости IК = f(UКЭ) при заданном параметре IБ (рисунок 3.6,б).

Крутые начальные участки характеристик относятся к режиму насыщения, а участки с малым наклоном - к нормальному активному режиму. Переход от первого режима ко второму, как уже отмечалось, происходит при значениях
|UКЭ|, превышающих |UБЭ|. На характеристиках в качестве параметра берется не напряжение UБЭ, а входной ток IБ. Поэтому о включении эмиттерного перехода приходится судить по значению тока IБ, который связан с входной характеристикой на рисунке 3.6,а. Для увеличения IБ необходимо увеличивать
|UБЭ|, следовательно, и граница между режимом насыщения и нормальным активным режимом должна сдвигаться в сторону больших значений.

Если параметр IБ = 0 (“обрыв” базы), то в соответствии с (3.22) IК =
IКЭО = (( + 1 ) IКБО. В схеме с ОЭ можно получить (как и в схеме с ОБ) I =
IКБО, если задать отрицательный ток IБ = -IКБО. Выходная характеристика с параметром IБ = -IКБО может быть принята за границу между НАР и режимом отсечки (РО). Однако часто за эту границу условно принимают характеристику с параметром IБ = 0.

Наклон выходных характеристик в нормальном активном режиме в схеме с общим эмиттером во много раз больше, чем в схеме с общей базой (h22Э (
(h22Б) Объясняется это различным проявлением эффекта Эрли. В схеме с общим эмиттером увеличение UКЭ, а следовательно и UКБ сопровождается уменьшением тока базы, а он по определению выходной характеристики должен быть неизменным. Для восстановления тока базы приходится регулировкой напряжения
UБЭ увеличивать ток эмиттера, а это вызывает прирост тока коллектора (IК, т.е. увеличение выходной проводимости (в схеме с ОБ ток IЭ при снятии выходной характеристики поддерживается неизменным).

3.2.3 Влияние температуры на статические характеристики БТ

Влияние температуры на положение входной характеристики схемы с ОБ при поддержании неизменным ее параметра аналогично ее влиянию на ВАХ полупроводникового диода. В нормальном активном режиме ток эмиттерного перехода можно представить формулой

[pic].

С ростом температуры тепловой ток IЭО растет быстрее, чем убывает экспонента из-за увеличения (Т = kT/q. В результате противоположного влияния двух факторов входные характеристики схемы с ОБ смещаются влево при выбранном токе IЭ на величину (U ( (1...2) мВ/°С (рисунок 3.7,а).

Начало входной характеристики в схеме с ОЭ определяется тепловым током коллекторного перехода IКБО который сильно зависит от температуры, так что начало характеристики при увеличении температуры опускается (рисунок 3.7, б).

[pic]
|а) |б) |
|Рисунок 3.7 Зависимость входных характеристик от температуры для|
|схем ОБ (а) и ОЭ (б). |

Влияние температуры на выходные характеристики схем с ОБ и ОЭ в НАР удобно анализировать по формулам (3.11) и (3.22):

[pic] и [pic].

Снятие выходных характеристик при различных температурах должно проводиться при поддержании постоянства параметров (IЭ = const в схеме с
ОБ и IБ = const в схеме с ОЭ). Поэтому в схеме с ОБ при IЭ = const рост IК будет определяться только увеличением IКБО (рисунок 3.8, а).

[pic]
|а) |б) |
|Рисунок 3.8 Зависимость выходных характеристик БТ от температуры для |
|схем включения с ОБ (а) и ОЭ (б). |

Однако обычно IКБО значительно меньше (IЭ, изменение IК составляет доли процента и его можно не учитывать.

В схеме с ОЭ положение иное. Здесь параметром является IБ и его надо поддерживать неизменным при изменении температуры. Будем считать в первом приближении, что коэффициент передачи ( не зависит от температуры.
Постоянство (IБ означает, что температурная зависимость IК будет определяться слагаемым (( + 1)IКБО. Ток IКБО (как тепловой ток перехода) примерно удваивается при увеличении температуры на 10°С, и при ( >> 1 прирост тока (( + 1)IКБО может оказаться сравнимым с исходным значением коллекторного тока и даже превысить его.

На рисунке 3.8,б показано большое смещение выходных характеристик вверх. Сильное влияние температуры на выходные характеристики в схеме с ОЭ может привести к потере работоспособности конкретных устройств, если не принять схемотехнические меры для стабилизации тока или термостатирование.

3.3 Дифференциальные параметры биполярного транзистора

Статические характеристики и их семейства наглядно связывают постоянные токи электродов с постоянными напряжениями на них. Однако часто возникает задача установить количественные связи между небольшими изменениями (дифференциалами) этих величин от их исходных значений. Эти связи характеризуют коэффициентами пропорциональности -дифференциальными параметрами.

Рассмотрим процедуру введения дифференциальных параметров БТ на примере наиболее распространенных h-параметров, приводимых в справочниках по транзисторам. Для введения этой системы параметров в качестве независимых переменных при описании статического режима берут входной ток
IВХ (IЭ или IБ) и выходное напряжение UВЫХ (UKБ или (UКЭ):

U1= f (I1,U2) (3.23)

I2= f (I1,U2)

В этом случае полные дифференциалы

[pic] (3.24)

[pic]

Частные производные в выражениях (3.24) и являются дифференциальными h- napaметрами, т.е. dU1=h11 d I1 +h12 dU2 (3.25) dI2=h21 dI1 + h22 dU2
(h11 -входное сопротивление, h12 -коэффициент обратной передачи, h21
-коэффициент передачи входного тока и h22 -выходная проводимость). Названия и обозначения этих параметров взяты из теории четырехполюсников для переменного тока.

Приращения статических величин в нашем случае имитируют переменные токи и напряжения.

Для схемы с общей базой dUЭБ=h11Б d IЭ +h12Б dUКБ (3.26) dIК=h21Б dIЭ + h22Б dUКБ

Эти уравнения устанавливают и способ нахождения по статическим характеристикам, и метод измерения h-параметров. Полагая dUКБ = 0, т.е. UКБ
= const, можно найти h11Б и h21Б, а считая dIЭ = 0, т. е. IЭ = const. определить h12Б и h22Б.

Аналогично для схемы с общим эмиттером можно переписать (3.26) в виде dUБЭ=h11Э d IБ +h12Э dUКЭ (3.27) dIК=h21Э dIБ + h22Э dUКЭ

Связь h-параметров со статическими характеристиками схем с ОБ и ОЭ и их определение по ним рассмотрены в (4(.

3.4 Линейная (малосигнальная) модель биполярного транзистора

В качестве малосигнальных моделей могут быть использованы эквивалентные схемы с дифференциальными h-, у- и z-параметрами, которые имеют формальный характер и в которых отсутствуют непосредственная связь с физической структурой транзистора. Например, эквивалентная схема для системы Н-параметров приведена на рисунке 3.9.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты