Физические основы электроники
p> [pic]; (1.7) [pic] (1.8)

Из уравнений (1.7) и (1.8) следует, что для полупроводника р-типа выполняется неравенство [pic](( [pic].

Если считать, что при комнатной температуре все акцепторные атомы ионизированы, т. е. [pic]=0, то на основании соотношения можно записать:

[pic], (1.9) где Na — концентрация акцепторных атомов в полупроводнике.

Соотношение (1.9) показывает, что уровень Ферми в полупроводнике р- типа располагается в нижней половине запрещенной зоны, так как Na >> ni, и при повышении температуры смещается к середине запрещенной зоны за счет ионизации атомов основного полупроводника.

Кроме того, на основании уравнений (1.4), (1.5), (1.7) и (1.8) можно записать следующее выражение:

[pic] (1.10) которое показывает, что введение в полупроводник примесей приводит к увеличению концентрации одних носителей заряда и пропорциональному уменьшению концентрации других носителей заряда за счет роста вероятности их рекомбинации.

1.2 ТОКИ В ПОЛУПРОВОДНИКАХ

1.2.1 Дрейфовый ток

В полупроводниках свободные электроны и дырки находятся в состоянии хаотического движения. Поэтому, если выбрать произвольное сечение внутри объема полупроводника и подсчитать число носителей заряда, проходящих через это сечение за единицу времени слева направо и справа налево, значения этих чисел окажутся одинаковыми. Это означает, что электрический ток в данном объеме полупроводника отсутствует.

При помещении полупроводника в электрическое поле напряженностью Е на хаотическое движение носителей зарядов накладывается составляющая направленного движения. Направленное движение носителей зарядов в электрическом поле обусловливает появление тока, называемого дрейфовым
(Рисунок 1.6, а ) Из-за столкновения носителей зарядов с атомами кристал- лической решетки их движение в направлении действия электрического поля

[pic]
|а) |б) |
|Рисунок 1.6 Дрейфовый (а) и диффузионный (б) токи в полупроводнике. |

прерывисто и характеризуется подвижностью (. Подвижность равна средней скорости [pic], приобретаемой носителями заряда в направлении действия электрического поля напряженностью Е = 1 В/м, т. е.

[pic]. (1.11)

Подвижность носителей зарядов зависит от механизма их рассеивания в кристаллической решетке. Исследования показывают, что подвижности электронов (n и дырок (p имеют различное значение ((n > (p) и определяются температурой и концентрацией примесей. Увеличение температуры приводит к уменьшению подвижности, что зависит от числа столкновений носителей зарядов в единицу времени.

Плотность тока в полупроводнике, обусловленного дрейфом свободных электронов под действием внешнего электрического поля со средней скоростью
[pic], определяется выражением [pic].

Перемещение (дрейф) дырок в валентной зоне со средней скоростью [pic] создает в полупроводнике дырочный ток, плотность которого [pic].
Следовательно, полная плотность тока в полупроводнике содержит электронную jn и дырочную jр составляющие и равна их сумме (n и p — концентрации соответственно электронов и дырок).

Подставляя в выражение для плотности тока соотношение для средней скорости электронов и дырок (1.11), получаем

[pic] (1.12)

Если сравнить выражение (1.12) с законом Ома j =(Е, то удельная электропроводность полупроводника определяется соотношением

[pic].

У полупроводника с собственной электропроводностью концентрация электронов равна концентрации дырок (ni = pi), и его удельная электропроводность определяется выражением

[pic].

В полупроводнике n-типа [pic] > [pic], и его удельная электропроводность с достаточной степенью точности может быть определена выражением

[pic].

В полупроводнике р-типа [pic]> [pic], и удельная электропроводность такого полупроводника

[pic]

В области высоких температур концентрация электронов и дырок значительно возрастает за счет разрыва ковалентных связей и, несмотря на уменьшение их подвижности, электропроводность полупроводника увеличивается по экспоненциальному закону.

1.2.2 Диффузионный ток

Кроме теплового возбуждения, приводящего к возникновению равновесной концентрации зарядов, равномерно распределенных по объему полупроводника, обогащение полупроводника электронами до концентрации np и дырками до концентрации pn может осуществляться его освещением, облучением потоком заряжённых частиц, введением их через контакт (инжекцией) и т. д. В этом случае энергия возбудителя передается непосредственно носителям заряда и тепловая энергия кристаллической решетки остается практически постоянной.
Следовательно, избыточные носители заряда не находятся в тепловом равновесии с решеткой и поэтому называются неравновесными. В отличие от равновесных они могут неравномерно распределяться по объему полупроводника
(рисунок 1.6, б)

После прекращения действия возбудителя за счет рекомбинации электронов и дырок концентрация избыточных носителей быстро убывает и достигает равновесного значения.

Скорость рекомбинации неравновесных носителей пропорциональна избыточной концентрации дырок (pn - [pic]) или электронов (np - [pic]):

[pic]; [pic], где (p - время жизни дырок; (n - время жизни электронов. За время жизни концентрация неравновесных носителей уменьшается в 2,7 раза. Время жизни избыточных носителей составляет 0,01...0,001 с.

Носители зарядов рекомбинируют в объеме полупроводника и на его поверхности. Неравномерное распределение неравновесных носителей зарядов сопровождается их диффузией в сторону меньшей концентрации. Это движение носителей зарядов обусловливает прохождение электрического тока, называемого диффузионным (рисунок 1.6, б).

Рассмотрим одномерный случай. Пусть в полупроводнике концентрации электронов n(x) и дырок p(x) являются функциями координаты. Это приведет к диффузионному движению дырок и электронов из области с большей их концентрацией в область с меньшей концентрацией.

Диффузионное движение носителей зарядов обусловливает прохождение диффузионного тока электронов и дырок, плотности которых определяются из соотношений:

[pic]; (1.13) [pic]; (1.14)

где dn(x)/dx, dp(x)/dx - градиенты концентраций электронов и дырок; Dn, Dp
- коэффициенты диффузии электронов и дырок.
Градиент концентрации характеризует степень неравномерности распределения зарядов (электронов и дырок) в полупроводнике вдоль какого-то выбранного направления (в данном случае вдоль оси x). Коэффициенты диффузии показывают количество носителей заряда, пересекающих в единицу времени единичную площадку, перпендикулярную к выбранному направлению, при градиенте концентрации в этом направлении, равном единице. Коэффициенты диффузии связаны с подвижностями носителей зарядов соотношениями
Эйнштейна:

[pic]; [pic].

Знак "минус" в выражении (1.14) означает противоположную направленность электрических токов в полупроводнике при диффузионном движении электронов и дырок в сторону уменьшения их концентраций.

Если в полупроводнике существует и электрическое поле, и градиент концентрации носителей, проходящий ток будет иметь дрейфовую и диффузионную составляющие. В таком случае плотности токов рассчитываются по следующим уравнениям:

[pic]; [pic].

1.3 КОНТАКТНЫЕ ЯВЛЕНИЯ

1 Электронно-дырочный переход в состоянии равновесия

Принцип действия большинства полупроводниковых приборов основан на физических явлениях, происходящих в области контакта твердых тел. При этом преимущественно используются контакты: полупроводник-полупроводник; металл- полупроводник; металл-диэлектрик-полупроводник.

Если переход создается между полупроводниками n-типа и p-типа, то его называют электронно-дырочным или p-n переходом.

Электронно-дырочный переход создается в одном кристалле полупроводника с использованием сложных и разнообразных технологических операций.

Рассмотрим p-n переход, в котором концентрации доноров Nд и акцепторов
Na изменяются скачком на границе раздела (рис. 1.7, а). Такой p-n переход называют резким. Равновесная концентрация дырок в p-области ([pic]) значительно превышает их концентрацию в n-области ([pic]). Аналогично для электронов выполняется условие [pic]> [pic]. Неравномерное распределение концентраций одноименных носителей зарядов в кристалле (рис. 1.7, б) приводит к возникновению диффузии электронов из n-области в p-область и дырок из p-области в n-область. Такое движение зарядов создает диффузионный ток электронов и дырок. С учетом выражений (1.13) и (1.14) плотность полного диффузионного тока, проходящего через границу раздела, определится суммой

[pic].

Электроны и дырки, переходя через контакт навстречу друг другу (благо- даря диффузии), рекомбинируют и в приконтактной области дырочного полу- проводника образуется нескомпенсированный заряд отрицательных ионов акцепторных примесей, а в электронном полупроводнике нескомпенсирован -ный заряд положительных донорных ионов (рис. 1.6, в). Таким образом, электронный полупроводник заряжается положительно, а дырочный - отрицательно. Между областями с различными типами электропроводности возникает собственное электрическое поле напряженностью Eсоб (рис. 1.7, а), созданное двумя слоями объемных зарядов.

Этому полю соответствует разность потенциалов Uк между n- и p- областями, называемая контактной (рис. 1.7, г). За пределами области объемного заряда полупроводниковые области n- и р-типа остаются электрически нейтральными.

Собственное электрическое поле является тормозящим для основных носителей заряда и ускоряющим для неосновных. Электроны p-области и [pic]

Рисунок 1.7 Равновесное состояние p-n перехода.

дырки n-области, совершая тепловое движение, попадают в пределы диффузионного электрического поля, увлекаются им и перебрасываются в противоположные области, образуя ток дрейфа, или ток проводимости.

Выведение носителей заряда из области полупроводника, где они являются неосновными, через электронно-дырочный переход ускоряющим электрическим полем называют экстракцией носителей заряда.

Используя выражение (1.12) и учитывая, что Е = -dU/dx, определяем плотность полного дрейфового тока через границу раздела p- и n-областей:

[pic].

Так как через изолированный полупроводник ток проходить не должен, между диффузионным и дрейфовым токами устанавливается динамическое равновесие:

[pic]. (1.15)

Приконтактную область, где имеется собственное электрическое поле, называют p-n переходом.

Поскольку потенциальная энергия электрона и потенциал связаны соотношением W = -qU, образование нескомпенсированных объемных зарядов вызывает понижение энергетических уровней n-области и повышение энергетических уровней р-области. Смещение энергетических диаграмм прекратится, когда уровни Ферми W фn и W фp совпадут (рис. 1.7, д). При этом на границе раздела (x = 0) уровень Ферми проходит через середину запрещенной зоны. Это означает, что в плоскости сечения x = 0 полупроводник характеризуется собственной электропроводностью и обладает по сравнению с остальным объемом повышенным сопротивлением. В связи с этим его называют запирающим слоем или областью объемного заряда.

Совпадение уровней Ферми n- и p-областей соответствует установлению динамического равновесия между областями и возникновению между ними потенциального барьера Uk для диффузионного перемещения через p-n переход электронов n-области и дырок p-области.

Из рис. 1.7, д следует, что потенциальный барьер

[pic].

Подстановка в это выражение результатов логарифмирования соотношений
(1.4), (1.7) позволяет получить следующее равенство:

[pic].

Если обозначить (т = kT/q и учесть уравнение (1.10), то можно записать:

[pic]; (1.16) [pic]. (1.17)

Из уравнений (1.16) и (1.17) следует:

[pic]; [pic]. (1.18)

При комнатной температуре (Т = 300 К) (т ( 0,026 В.

Таким образом, контактная разность потенциалов зависит от отношения концентраций носителей зарядов одного знака в р- и n-областях полупроводника.

Другим важным параметром p-n перехода является его ширина, обозначаемая ( = (p + (n.

Ширину запирающего слоя ( можно найти, решив уравнения Пуассона для n- области и p-области:

[pic]; (1.19) [pic]. (1.20)

Решения уравнений (1.19) и (1.20) при граничных условиях

[pic]; [pic] [pic]; [pic]

имеют вид:

[pic] для -(p < x < 0;

[pic] для 0 < x > (т, то:

[pic]; [pic].

При комнатной температуре [pic]; (1.42)


(в соотношении (1.42) значение тока подставляется в амперах).
Сопротивление утечки rУТ учитывает возможность прохождения тока по поверхности кристалла из-за несовершенства его структуры. При прямом включении p-n перехода СБАР > r1, СБАР >> СДИФ и эквивалентная схема имеет вид, показанный на рис. 1.15, б.

1.4 РАЗНОВИДНОСТИ ЭЛЕКТРИЧЕСКИХ ПЕРЕХОДОВ

1.4.1 Гетеропереходы

Гетеропереход образуется двумя полупроводниками, различающимися шириной запрещенной зоны. Параметры кристаллических решеток полупроводников, составляющих гетеропереход, должны быть близки, что ограничивает выбор материалов. В настоящее время наиболее исследованными являются пары: германий-арсенид галлия, арсенид галлия-мышьяковидный индий, германий-кремний. Различают n-p и p-n гетеропереходы (на первое место ставится буква, обозначающая тип электропроводности полупроводника с более узкой запрещенной зоной). На основе гетеропереходов возможно также создание структур n-n и p-p.

[pic]

Рисунок 1.16 Упрощенная энергетическая диаграмма p-n гетероперехода в равновесном состоянии.

На рисунке 1.16 приведена упрощенная энергетическая диаграмма n-p перехода между арсенидом галлия р-типа ((WP = 1,5 эВ) и германием n-типа
((Wn = 0,67 эВ) в состоянии равновесия (U = 0). При контакте полупроводников происходит перераспределение носителей зарядов, приводящее к выравниванию уровней Ферми p- и n-областей и возникновению энергетического барьера для электронов n-области q(Ukn и. для дырок p- области q(Uкp, причем Uкn > Uкp.

[pic]

Рисунок 1.17 Упрощенная энергетическая диаграмма p-n гетероперехода, включенного в прямом состоянии.

В состоянии равновесия ток через n-p переход равен нулю. Поскольку потенциальные барьеры для дырок и электронов различны, при приложении к гетеропереходу прямого напряжения смещения он обеспечит эффективную инжекцию дырок из полупроводника с большей шириной запрещенной зоны (рис.
1.17).

1.4.2 Контакт между полупроводниками одного типа электропроводности

Контакт полупроводников с одним типом электропроводности, но с разной концентрацией примесей обозначают р+-р или п+-п (знаком "плюс" отмечается полупроводник с большей концентрацией примесей). В таких контактах носители из области с большей концентрацией примеси переходят в область с меньшей концентрацией. При этом в области с повышенной концентрацией нарушается компенсация зарядов ионизированных атомов примеси, а в другой области создается избыток основных носителей зарядов. Образование этих зарядов приводит к появлению на переходе собственного электрического поля и контактной разности потенциалов, определяемой следующими соотношениями: для p+-р перехода

[pic]; для n+-n перехода [pic].

В этих переходах не образуется слой с малой концентрацией носителей зарядов, и их сопротивление определяется в основном сопротивлением низкоомной области. Поэтому при прохождении тока непосредственно на контакте падает небольшое напряжение и выпрямительные свойства этих переходов не проявляются. В p+-p и n+-n- переходах отсутствует инжекция неосновных носителей из низкоомной области в высокоомную. Если, например, к переходу n+-n подключен источник тока плюсом к n-области, а минусом к n+- области, то из n+-области в n-область будут переходить электроны, являющиеся в ней основными носителями зарядов. При изменении полярности внешнего напряжения из n+-области в n-область должны инжектироваться дырки, однако их концентрация мала, и этого явления не происходит. Переходы типа p+-p и n+-n возникают при изготовлении омических контактов к полупроводникам.

[pic]

Рисунок 1.18 Энергетическая диаграмма p-i перехода.

Промежуточное положение между p+-p- или n+-n- и p-n переходом занимают p-i и n-i переходы. Такие переходы образуются между двумя пластинами, одна из которых имеет электронную или дырочную электропроводность, а другая - собственную.

На рис 1.18 показаны энергетическая диаграмма и изменение концентраций на границе двух полупроводников с p- и i-областями. Вследствие разности концентраций носителей зарядов в p- и i-областях происходит инжекция дырок из p-области в i-область и электронов из i-области в p-область. Вследствие малой величины инжекционной составляющей электронного тока потенциальный барьер на границе перехода создается неподвижными отрицательными ионами акцепторов р-области и избыточными дырками i-области, диффундирующими в нее из p-области. Поскольку [pic] >> [pic], глубина распространения запирающего слоя в i-области значительно больше, чем в р-области.

1.4.3 Контакт металла с полупроводником

Свойства контакта металла с полупроводником зависят от работы выхода электронов из металла (W0м) и из полупроводника (W0n или W0p). Электроны переходят из материала с меньшей работой выхода в материал с большей работой выхода. При контакте металла с электронным полупроводником при выполнении условия W0n < W0p электроны переходят из полупроводника в металл. Если осуществлен контакт металла с дырочным полупроводником и выполняется условие W0м < W0p, будет происходить переход электронов в полупроводник. И в том, и в другом случае произойдет обеднение свободными носителями заряда приконтактной области полупроводника.

Обедненный слой обладает повышенным сопротивлением, которое может изменяться под воздействием внешнего напряжения. Следовательно, такой контакт имеет нелинейную характеристику и является выпрямляющим. Перенос зарядов в этих контактах осуществляется основными носителями, и в них отсутствуют явления инжекции, накопления и рассасывания зарядов. Таким образом, выпрямляющие контакты металл-полупроводник малоинерционны и служат основой создания диодов с барьером Шоттки, обладающих высоким быстродействием и малым временем переключения.

Если при контакте металла с полупроводником выполняется условие
W0м < W0м или W0м > W0p, то приконтактный слой полупроводника обогащается основными носителями заряда и его сопротивление становится низким при любой полярности внешнего напряжения. Такой контакт имеет практически линейную характеристику и является невыпрямляющим.

1.4.4 Омические контакты

Омическими называют контакты, сопротивление которых не зависит от величины и направления тока. Другими словами, это контакты, обладающие практически линейной вольт-амперной характеристикой. Омические контакты обеспечивают соединение полупроводника с металлическими токопроводящими элементами полупроводниковых приборов. Кроме линейности вольт-амперной характеристики, эти контакты должны иметь малое сопротивление и обеспечивать отсутствие инжекции носителей из металлов в полупроводник. Эти условия выполняются путем введения между полупроводником рабочей области кристалла и металлом полупроводника с повышенной концентрацией примеси
(рис. 1.19). Контакт между полупроводниками с одинаковым типом электропроводности является невыпрямляющим и низкоомным. Металл выбирают так, чтобы обеспечить малую контактную разность потенциалов. Одним из способов получения омических контактов является введение в металл примеси, которой легирован полупроводник. В этом случае при сплавлении металла с полупроводником в контактной области образуется тонкий слой вырожденного полупроводника, что соответствует структуре, изображенной на рис. 1.19.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты