Задача обработки решеток
p> [pic] (3.7)

Чтобы определить отдельные полупространства, содержащие Е, достаточно рассмотреть те корреляционные векторы, которые генерируют Е : положительные кратные векторов во множестве А. Замкнутое полупространство содержит Е тогда и только тогда, когда [pic] для каждого [pic] и каждого [pic].
Поскольку [pic] можно сделать произвольно большой, должно быть истинным то, что [pic], т.е. q - член конуса Р. Наименьшее полупространство, содержащее
Е для такого q соответствует выбору с = 0. Итак,

[pic] (3.8)

или, словами, следующее.

Теорема о продолжимости : .вектор [pic] является продолжимым тогда и только тогда, когда [pic] для всех положительных p.

Таким образом, положительные полиномы естественно имеют место в задаче продолжаемости, поскольку они определяют гиперплоскости основы множества Е продолжаемых векторов корреляции. На языке функционального анализа теорема о продолжимости, которая является видом леммы Фаркаша [11], просто констатирует, что Е и Р - положительные сопряженные конусы.[10]. Эта теорема имеет важное следствие относительно перемещения простой характеристики Р, в терминах положительности, на характеристику Е. Хотя введение спектральной основы в рассматриваемую задачу является новым, по существу та же характеристика продолжимости была первоначально использована
Кальдероном и Пепинским [l2], и Рудиным [l3].

Рисунок 4 демонстрирует зависимость Е от спектральной основы.
Существуют две точки зрения на эту зависимость. Прямая точка зрения отмечает тот факт, что Е является выпуклым конусом, генерированным А; поскольку К уменьшилось, А сжалось и Е теперь меньше, чем на рис.3.
Косвенная точка зрения включает ограничения; множество К ограничивает множество Р посредством условия о положительности, а множество Р ограничивает множество P посредством теоремы продолжимости. Итак, когда К сжимается, Р растет, и Е сжимается.

Для случая временной последовательности теорема о продолжимости сводится к тесту положительной определенности теплицевой матрицы, образованной из корреляционных выборок. Следовательно, о продолжимости можно говорить как об общем аналоге положительной определенности.

Пример 3.1 : Случай временной последовательности; D=1, [pic].B этом случае, проблема продолжимости сводится к проблеме тригонометрических моментов [9]. Хотя это и не справедливо в общем случае, для случая временной последовательности, как следует из фундаментальной теоремы алгебры, положительный полином может быть факторизован в виде квадрата модуля М-той степени тригонометрического полинома

[pic].

Внутреннее произведение [pic] становится теплицевой формой в коэффициентах
[pic]

[pic]

Таким образом, требование того, чтобы внутреннее произведение [pic] было положительным для всех полиномов сводится к требованию положительной определенности теплицевой формы, соответствующей корреляционным измерениям.

1.3 Граница и внутренняя часть

Необходимо будет делать различие между границей и внутренней частью множеств Е и Р. Рассмотрение метода Писаренко в разделе 17, к примеру, включает векторы на границах Е и Р. Векторы во внутренней части Е и P являются важными тогда, когда затрагиваются пункции спектральной плотности, как например, в методе спектральной опенки по способу максимальной энтропии
[l4].

Граница замкнутого множества состоит из тех членов, которые находятся произвольно близко к некоторому вектору снаружи множества. Внутренняя часть замкнутого множества состоит из тех членов, которые не находятся на границе. .

Граница и внутренняя часть конечного измеримого множества не зависит от частного выбора нормы вектора [15]. Кроме того, поскольку Р и Е являются выпуклыми множествами, особенно просто охарактеризовать их внутренний части и границы.

Граница Р, обозначаемая [pic], состоит из тех положительных полиномов, которые равны нулю для некоторых [pic]. Внутренняя часть Р, обозначаемая [pic], состоит из тех полиномов, которые строго положительны на К.

Положительные полиномы могут быть использованы для определения границы и внутренней части Е. Граница Е, обозначаемая [pic], состоит из тех продолжимых корреляционных векторов, которые превращают в нуль внутреннее произведение с некоторым ненулевым положительным полиномом. Внутренняя часть Е, обозначаемая [pic], состоит из тех корреляционных векторов, которые делают строго положительными внутренние произведения с каждым ненулевым положительным полиномом.

1.3.1 Функции спектральной плотности мощности

Многие методы спектральной оценки представляют спектр мощности не как меру, а в виде функции спектральной плотности. Это ведет к модификации задачи продолжимости: если задана фиксированная положительная конечная мера
[pic], которая определяет интеграл

[pic] (3.9)

то какие корреляционные векторы [pic] могут быть произведены от некоторой строго положительной функции [pic]? При одном дополнительном ограничении на
[pic], которое легко удовлетворяется на практике, модно показать, что векторы, которые могут быть представлены таким образом, являются векторами, находящимися во внутренней части Е. Кроме того, можно показать, что любой век тор во внутренней части Е может быть представлен в форме /3.9/ для некоторой непрерывной, строго положительной [pic].

Теорема продолжимости для функций спектральной плотности:
Если каждое соседство каждой точки в К имеет строго положительную [pic]- меру, то

1/если [pic] равномерно ограничена относительно нуля по К, то

[pic];

2/если [pic], то

[pic]

для некоторой непрерывной, строго положительной функции [pic].

Доказательство этой теоремы содержится в Приложении А.

1.3.2 Дискретизация спектральной основы

Многие представляющие интерес спектральные основы содержат бесконечное число точек. Эти спектральные основы следует часто аппроксимировать в вычислительных алгоритмах посредством конечного числа точек. Поэтому важно понимать эффекты такой аппроксимации.

Рассмотрим дискретную спектральную основу

[pic] (3.10)

Мера [pic] на дискретной основе полностью характеризуется ее значением
[pic] в каждой точке. Итак, обратный интеграл -Фурье сводится к конечной сумме

[pic] (3.11)
Аналогично, для санкций спектральной плотности

[pic] (3.12)

Мера [pic] может считаться определяющей квадратурное правило для интегралов по спектральной основе.

Из определений продолжимых векторов корреляции и положительных полиномов можно заметить, что, если спектральная основа образуется посредством выбора конечного числа- точек из некоторой исходной спектральной основы, то новое множество Е является выпуклым многогранником, вписанным внутрь исходного множества Е, а новое множество Р является выпуклым многогранником, описанный вокруг первоначального множества Р.
Следовательно, новое Е меньше исходного Е, а новое Р больше исходного Р.
Достаточно плотная выборка исходной спектральной основы приведет к многогранникам, которые аппроксимируют исходные множества с произвольной точностью. Например, на рис.5 показан эффект аппроксимации спектральной основы [pic] четырьмя выборками [pic] для [pic]. Исходные конусы Е и Р имеют круговое поперечное сечение при [pic], как показано на рис.3. Конусы, соответствующие выборочной основе имеют /оба/ квадратное поперечное сечение. Границы новых и старых конусов пересекаются у векторов, соответствующих точкам выборки.

1.4 Метод Писаренко

Писаренко описал метод спектральной оценки временной последовательности, в котором спектр моделируется в виде суммы импульсов штос компонента белого шума [5]. Если компонента белого шума выбирается настолько большой, насколько это возможно, то, как он показал, положение и амплитуды импульсов, необходимые для согласования измеренных корреляций, определяются единственным образом. Метод Писаренко будет выведен для более обшей ориентации ИП и для более общей шумовой компоненты. Связь метода
Писаренко с вопросом продолжимости будет продемонстрирована.

Продолженная оценка Писаренко будет получена как решение задачи оптимизации, включающей минимизацию линейного функционала над выпуклой областью, определенной линейными ограничениями.
Решение этой задачи оптимизации существует всегда, но оно может быть не единственным. Получается задача двойственной' оптимизации, которая для случая временных последовательностей приводит к знакомой интерпретации метода Писаренко в виде разработки сглаживающего фильтра с ограничениями по методу наименьших квадратов. И опять, решение этой двойственной задачи существует всегда, но может быть не единственным.

Рассматриваются алгоритмы для вычисления по методу Писаренко.
Основная задача оптимизации записывается, для спектральной основы, состоящее из конечного числа точек, в воде линейной программы стандартного вида. Рассматривается применение симплекс-метода для решения этой основной линейной программы. Представлена двойственная линейная программа.
Рассматриваются также возможность создания вычислительных алгоритмов, более быстрых, чем симплекс-метод.

1.4.1 Метод Писаренко для решеток датчиков

Основой метода Писаренко является однозначное разложение /рис.6/ корреляционного вектора [pic] на сумму масштабированного вектора корреляции шума [pic], во внутренней части Е, и остаток [pic] на границе Е

[pic] (4.1)

Допущение о том, что [pic] находится в [pic] подразумевает, что такое разложение произвольного вектора [pic] существует и единственно. Рассмотрим однопараметрическое семейство корреляционных векторов

[pic] (4.2)

Для [pic] достаточно положительного [pic] не должен быть продолжаемым, а для [pic] достаточно отрицательного [pic] должен быть продолжимым, так как допущение, что [pic] подразумевает, что Е содержит окрестность [pic].
Выпуклость Е означает, что имеется некоторое наибольшее число [pic], такое, что [pic] является продолжимым. Поскольку имеются произвольно близко к
[pic] непродолжимые векторы, [pic] должен быть на границе Е. Кроме того, поскольку [pic]тогда и только тогда, когда [pic] продолжим, это разложение
[pic] может 'быть использовало в качестве теста продолжимости.

Это однозначное разложение [pic] может быть сформулировано в виде основной задачи линейной оптимизации на всех положительных спектрах мощности. Отметим, что [pic] имеет по крайней мере , одно положительное спектральное представление [pic] и, что из /4.1/ для [pic] следует

[pic] (4.3)

Утверждение того, что [pic] является наибольшим числом, так что остаток
[pic] продолжаем, приводит к линейной задаче оптимизации

[pic] (4.4з)

так что

[pic] (4.45)

Максимум равен [pic] и он достигается [pic].

Поскольку [pic] продолжаемо, оно соответствует некоторой положительной мере [pic]. Следовательно /4.1/ принимает вид

[pic] (4.5)

Если [pic], то [pic] является положительной мерой, которая согласует корреляционные измерения и которая имеет наиболее возможную шумовую компоненту.

Некоторая дополнительная информация относительно остатка [pic] и его спектрального представления может быть получена. [pic] находится на границе
Е; следовательно, он дает нулевое внутреннее произведение с некоторым ненулевым положительным полиномом

[pic] (4.6)

Из этого следует, что основа [pic] должна быть на нулевом множестве [pic].
Или более точно, основа любого спектрального представления [pic] должна быть на пересечении нулевых множеств всех положительных полиномов, которые образуют нулевое внутреннее произведение с [pic]. Это предполагает окончательный шаг в выводе метода Писаренко; а именно, объединение остатка
[pic] с импульсным спектром. ^ .

Тот факт, что целевой функционал основной задачи оптимизации не является строго выпуклым, допускает, что решение не может в общем случае быть единственным. Решение [pic] основной задачи оптимизации всегда единственно тогда и только тогда, когда корреляционный вектор на границе Е имеет единственное спектральное представление. В случае временной последовательности каждый такой [pic] имеет единственное спектральное представление, как сумма М или меньшего числа импульсов[5].

Пример 4.1: Случай временной последовательности, [pic]. Как и в примере 3.1, каждый положительный полином может быть факторизован в виде
[pic] для некоторого тригонометрического полинома М-той, степени [pic] и следовательно [pic] могут быть равными нуля не более, чем в М точках.
Спектр [pic], следовательно, должен быть суммой импульсов в этих точках.
Кроме того, поскольку возможно построить положительный полином, который равен нулю в [pic] произвольно выбранных точках и нигде больше, то отсюда следует, что [pic] имеет единственное спектральное представление в виде суммы импульсов в общих нулях всех положительных полиномов [pic] так что
[pic].

В более широком смысле, теорема продолжимости совместно с теоремой
Каратеодори [16] показывает, что имеется по крайней мере одно спектральное представление [pic] в виде суммы не более чем 2М импульсов.

Теорема представления: Если [pic], то существует [pic] и [pic], так что

[pic] (4.7)

Доказательство теоремы представления можно найти в Приложении В. Это представление и, таким образом, решение основной задачи оптимизации могут быть не единственными. Дальнейшее обсуждение этой проблемы единственности можно найти в Приложений С.

Если [pic] и местоположения импульсов в единственном решении [pic] могут быть определены для данного [pic], то амплитуды импульсов могут быть вычислены просто путем решения набора линейных уравнений. А сейчас мы получим двойственную задачу оптимизации, которая дает [pic] и [pic], так что [pic]. Тогда, если [pic] имеет единственное спектральное представление, местоположения импульсов могут быть определены по нулям [pic]. Из теоремы продолжимости следует

[pic] (4.8)

Так как [pic] и [pic], то отсюда следует, что [pic] и [pic] для всех [pic].
Кроме того, так как [pic] для некоторого [pic], то отсюда следует, что

[pic] (4.9а)

на множестве

[pic](4.9b)

и минимум достигается при [pic]. Решение этой двойственной задачи может не быть единственным даже в случае временной последовательности, когда она сводится к задаче собственного вектора, полученной Писаренко, и приводит к интерпретации метода Писаренко в виде определения сглаживающего фильтра с ограничениями по методу наименьших квадратов.
Пример 4.2 : Случай временной последовательности, [pic]. Как в примере
/3.1/

[pic].

Кроме того, если [pic] соответствует белому шуму единичной мощности,

[pic].

Таким образом, двойственная задача оптимизации сводится к нахождению собственного вектора теплицевой матрицы, связанного с [pic], соответствующего наименьшему собственному значению. Если имеется несколько таких собственных векторов, импульсы располагаются в общих нулях соответствующих полиномов. Любой нормированный собственный вектор, соответствующий минимальному собственному значению, дает коэффициенты сглаживающего фильтра, сумма квадратов величин которых ограничена единицей, что дает наименьшую выходную мощность при наличии входного процесса, корреляции которого описываются [pic][17].

1.4.2 Вычисление оценки Писаренко

При разработке алгоритмов вычисления оценки Писаренко можно столкнуться с дискретной спектральной основой

[pic]

Для такой основы основная задача /4.4/ может быть переписана в виде линейное программы стандартного вида

[pic] (4.11з)

так что для [pic]

[pic] (4.11b) с N переменными и 2М ограничениями. Минимум равен [pic] и достигается для
[pic]. Основная теорема линейного программирования 18 эквивалентна теореме представления в этом случае. При условии, что для этой линейной программы существует решение, как показано в предыдущем разделе, основная теорема гарантирует решение, в котором не более, чем 2М из [pic] не равны нулю, так называемое, базовое решение.

Двойственная линейная программа [l5]

[pic] (4.12з)

так что для [pic]

[pic] (4.12b)

эквивалентная двойственной задаче /4.9/ для дискретной спектральной основы, где ограничение

[pic] (4.13)

было использовано для исключения [pic] и где [pic]. Её минимум равен [pic] и достигается при [pic].

Основная задача может быть решена при использовании симплекс-метода
[18]. Применение симплекс-метода к основной задаче приводит в результате к существенно тому же результату /вычислительному алгоритму/, что и применение, /одинарного/ метода замены к двойственной задаче [19]. Применив соответствующий метод для избежания зацикливания [20], может быть получен алгоритм, который гарантирует сходимость к оптимальному решению за конечное число шагов, хотя его воплощения обычно были медленными .

Задача чебышевской аппроксимации связана с вычислением оценки
Писаренко; она может быть сформулирована, как минимизация линейного функционала на выпуклом пространстве, определенном ограничениями типа линейных неравенств [l6]. Она также решалась с использованием симплекс- метода /одинарная замена/. Однако для частной задачи чебышевской аппроксимации непрерывных функций полиномами с одной переменной существует вычислительный метод, который значительно быстрее симплекс-метода, это метод многократной замены Ремеза. Хотя были сделаны попытки распространить этот метод на более общие задачи [21], появившиеся в результате алгоритмы не достаточно хорошо понятны; в частности, не доказана их сходимость.

И наконец, задачи недискретной оптимизации, включенные в вычисление оценки Писаренко, /4.4/ к /4.9/, являются видом, известным, как полубесконечные программы. Как теоретические, так и вычислительные аспекты таких программ рассматриваются в сборнике статей, изданных Геттичем [22].

Резюме

Эта статья связана с тем, что вероятно является наиболее простой и интересной задачей в обработке антенных решеток; оценкой спектра мощности с известной основой при условии, что даны некоторые выборки его корреляционной функции. Хотя и простая, эта задача сохраняет несколько черт, которые являются общими для многих задач обработки решеток: многомерные спектры, корреляционные выборки с неравномерными отчетами и произвольные спектральные основы.

Исследование спектральных оценок, согласованных с корреляцией привели к задаче продолжимости. Были даны две характеристики продолжаемости ста задача, для случая временных последовательностей, известна как задача тригонометрических моментов и ее решение включает рассмотрение положительной определенности корреляционных выборок. Положительная определенность может поэтому рассматриваться как специальный случай продолжимости.

Базируясь на теоретической основе, разработанной при решении задачи продолжаемости, метод Писаренко был распространен со случая временных последовательностей на задачу обработки решетки. Было показано, что метод
Писаренко тесно .связан с задачек продолжимости. Было показано, что вычисление оценки Писаренко включает решение линейной задачи оптимизации.
Было показало, что решение этой задачи не является единственным в общем случае, хотя оно единственно для случая временной последовательности, где задача линейном оптимизации сводится к задача собственных значений.

Хотя рассмотренная в этой статье задача спектральной оценки была разработала для обработки решетки, теоретическая структура и результирующие алгоритмы должна быть полезными в других многомерных задачах, например, обработке изображений.

2.1 ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ДЛЯ ОТКРЫТОГО РЕЗОНАТОРА С ОСЕСИММЕТРИЧНЫМ

ДИСКОМ

В § 9.3 было получено интегральное уравнение (9.39) для резонатора с диэлектрическим телом в виде шара. Такая форма диэлектрика хороша для анализа, но неудобна для практики.

Страницы: 1, 2, 3



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты