Технология ремонта шатуна автомобиля ВАЗ-2108
имический состав порошка ПГ-ХН80СР2: углерод - 0,3-: 0,6%, кремний - 1,5-3,0%, железо - 4,5-5,0%, хром - 12 - 15%, бор - 1,5-2,5%, никель - 80,2-73,9%.

Порошок выпускается Торезским заводом твердых сплавов Министерства цветной металлургии.

Перед нанесением - порошковой композиции шатун должен быть собран с нижней крышкой; болты крепления крышки шатуна затянуть моментом 20-22 кгс-м.

Рис.7. Хонинговальная головка: 1 - гидроцилиндр; 2 - опорная втулка: 3 - установочный палец; 4 - планка; 5 - колодка хонинго-вальной головки; 6 - алмазные бруски; 7 - поводок; в - чека; 9 - стержень; 10 - толкатель; 11 - корпус головки: 12 - разжимной конус; 13 - планка: 14 - прижимная втулка; 15 - шатун; 16 - корпус.

При наплавке поверхности отверстия в самом шатуне стержень, его нужно охлаждать путем погружения в воду по головку. При наплавке отверстия в крышке шатуна охлаждение не требуется. Толщина наплавленного слоя - 0,1 мм. Твердость наплавленной поверхности - HRC 35-40. Трудоемкость наплавки - 7-10 мин на один шатун.

После наплавки отверстие нижней головки шатуна хонингуют до получения номинального размера 93+0>021 мм. Хонингование отверстия в нижней головке шатуна после расточки или наплавки. производят на вертикально-хонинговальном станке модели ЗМ82-в приспособлении, показанном на рис.5. Хонинговальную головку крепят в патроне, который устанавливают в шпиндель станка. Привод механизма разжима брусков встроен в шпиндельную бабку станка. Поступательное движение от привода передается толкателю 10 и через поводок 7 разжимному конусу 12. Последний, воздействуя на планки 13, разжимает колодки 5 с алмазными брусками 6. Хонингуют отверстие предварительно до диаметра 92,99+°>021 мм алмазными брусками марки 2768-0103-Г-АСР 100/8Q-50M-73 (ГОСТ 16606-71) при удельном давлении брусков 4-6 кгс/см2 и окончательно до диаметра 93+0>021 мм алмазными брусками марки 2768-0103-1-АСМ 28/20-50М-73 (ГОСТ 16606-71) при удельном давлении брусков 3-5 кгс/см2. Хонинговальная головка должна делать 88 двойных ходов в минуту при 88 об/мин шпинделя станка. При ослаблении посадки или провороте бронзовой втулки отверстие в верхней головке после выпрессовки втулки растачивают под ремонтный размер 56,25 мм. Расточку отверстия под ремонтную втулку и во втулке под поршневой палец производят на алмазно-расточном станке модели 2705 в приспособлении.

С корпуса 19 приспособления снимают съемную приставку, 6, а на ее место устанавливают съемную приставку 10 и крепят болтами. На приставку устанавливают шатун, базируя отверстием в нижней головке на установочный палец 16 и упор /7, фиксируют отверстие верхней головки относительно оси шпинделя станка съемным пальцем 14, крепят шатун в приспособлении болтом 13 и вынимают съемный палец 14. Растачивают отверстие до диаметра 56,25+0'03 мм под ремонтную втулку резцом с пластинкой из твердого сплава Т30К4 при 860 об/мин расточной головки и подаче 0,1 мм/об. Шероховатость поверхности после обработки Ra = 1,25 мкм.

В расточенное отверстие запрессовывают ремонтную втулку (Рис.6), изготовленную из бронзы БрОЦС 5-5-5 (ГОСТ 61.3-65).

Рис.8. Ремонтная втулка верхнее головки шатуна

Наружный диаметр Д втулки для расточенного на ремонтный размер отверстия в шатуне должен быть 56,25

Бронзовую втулку запрессовывают с натягом 0,05-0,12 мм заподлицо с торцом шатуна, совместив масляные отверстия во втулке и шатуне. Перед запрессовкой втулку охладить до температуры минус 50°С в специальном контейнере с сухим льдом.

Рис.9. Приспособление для контроля шатуна: 2, 6 - индикатор; 3 - основание; 4 - корпус; 5 - стойка; 7 - упор; 9 - базовый палец; 10 - установочный палец; U - скоба

Расточку отверстия в бронзовой втулке до диаметра 50 4+0°. Шероховатость поверхности после расточки равна 0,32 мкм. Перед мойкой масляный канал в шатуне прочищают шомполом. Промывают шатун в моечной машине и обдувают сжатым воздухом.

Изгиб, скручивание шатуна, расстояние между осями отверстий верхней и нижней головок проверяют на контрольном приспособлении.

Настройку индикаторов, установленных на приспособлении, производят по эталону. В верхнюю головку шатуна вставляют установочный палец 10, надевают шатун отверстием нижней головки на базовый палец 9 и кладут выступающими поверхностями установочного пальца 10 на упор 7.

Непараллельность осей отверстий верхней и нижней головок не должна превышать 0,04 мм на длине 100 мм.

Оси отверстий должны лежать в одной плоскости, отклонение не более 0,03 мм на длине 100 мм.

Расстояние между осями должно быть 280±0,03 мм. Контроль отверстий (диаметр 50^0^° mm и диаметр 93+0'021 мм) производят индикаторным нутромером. Шероховатость поверхностей в отверстиях головок - а = 0,63 мкм торцов а=1,25 мкм. Проверяют совпадение отверстий во втулке и шатуне.

Таблица 2.

Анализ дефектов детали и требований, предъявляемых к отремонтированной детали.

Номер дефекта

Название

дефекта

Метод или прибор контроля

Размеры

Номинальный

Пред. допустим.

1

Износ торцов нижней головки шатуна рис.1 поз.1

Штангенциркуль

41,65

40,65

2

Задиры поверхности нижней головки шатуна рис.1. поз.1

Визуально

3

Износ отверстия под втулку верхней головки шатуна рис 1. поз 4.

Нутример

50 + 0,031

50+0,04

2.2 Определение годовой программы технологического процесса восстановления детали

Годовая программа: Nг=N n kр=25000 1 0,5 = 12 500 шт.

Выбор способов устранения дефектов.

Дефект №1 (Износ торцов нижней головки шатуна).

Выбираем способы по конструкторско-технологическим характеристикам.

Металлизация:

МПл не подходит из-за малой толщины наращиваемого слоя металла и вида покрытия.

Способ МГП не подходит из-за дороговизны материала покрытия (бронза дорогая).

МЭД подходит по всем параметрам и показателям.

МВЧ и МИВЧ не подходит по материалу покрытия и виду восстанавливаемой поверхности.

Ручная и механизированная сварка под слоем флюса 6

НРг и НРад не подходят по виду основного материала изношенной детали.

НОФпл, НСФсер, НСФтмо, НСФпг, НСФпл подходят по всем показателям.

Вибродуговая наплавка:

НВдж, МВДсо2, НВДп, НВДвс, НВДгж, НВДпл, НВДуз, НВДтмо подходят по всем показателям.

Микронаплавка, наплавка в среде СО2, припекание порошков.

НЭИ, НПЭ, НБм не подходят по виду поверхности восстановления.

НУГфл, НУГлэ, ТДПП, ЭНП не подходят из-за большего минимально допустимого диаметра восстанавливаемой поверхности.

НУГ и НУГар подходят по всем показателям.

Хромирование:

ХРппол, ХРлег, ХРхэ не подходят так как сопряжение восстанавливаемой поверхности является подвижным.

ХР, ХРор, ХРуз, ХРстр подходят по всем показателям.

Железнение:

Использование в данном случае любого вида железнения весьма не желательно по трем причинам:

а) Приходится наносить 2-3 слоя, так как один не обеспечивает требуемой толщины.

б) Низкая экологичность методов железнения, требуется очистка стоков.

в) Низкая усталостная выносливость.

По показателям физико-механических свойств:

Способ наплавки ручной аргонодуговой не подходит из-за малой величины микротвердости (всего 200 кг/мм2).

Способ наплавки вибродуговой в среде пара не подходит из-за малой величины микротвердости (всего 225 кг/мм2).

Способы вибронаплавки НВдж, НВДвс, НВДгж, НВДпл, НВДуз и НВДтмо не подходят из-за малого показателя долговечности.

Способ наплавки в среде углекислого газа без охлаждения не подходит из-за малой величины микротвердости (всего 230 кг/мм2).

Способ хромирования в обычном электролите не подходит из-за малой величины выносливости.

По технико-экономическим показателям.

Наплавка ручная газовая не подходит для нашего массового ремонта деталей (12500 деталей в год), так как является весьма дорогим способом. Хромирование способами ХРппол, ХРхэ, ХРуз, ХРстр не желательны к применению из-за дороговизны.

По прочим характеристикам:

Способ металлизации МЭД не стоит применять т.к получаемое покрытие является хрупким, что для нашего случая недопустимо.

Способ вибродуговой наплавки в среде углекислого неприемлем из-за наличия пор, раковин, трещин и т.д.

Способ вибронаплавки порошковой проволоки не желателен к применению из-за наличия неравномерностей в структуре покрытия.

Способ микронаплавки в среде углекислого газа с добавлением аргона нежелателен к применению из-за низкой производительности.

Способ хромирования в электролите с каталитическими добавками применяется редко и оборудование для него весьма дорого, поэтому его мы тоже не будем применять.

Выбираем способ хромированием в саморегулирующимся электролите.

Дефект №2 (Задиры поверхности нижней головки шатуна).

Выбираем способы по конструкторско-технологическим характеристикам.

Металлизация:

МВЧ, МПГ, МПл не подходят по виду материалу покрытия.

Способ МИВЧ не подходит по виду восстанавливаемой поверхности

По всем показателям подходит способ МЭД.

Ручная и механизированная сварка под слоем флюса:

Подходят способы НРад и НСФлп.

Остальные способы не подходят по виду восстанавливаемой поверхности или материалу покрытия.

Вибродуговая наплавка:

Ни один способ не подходит из-за вида восстанавливаемой поверхности.

Микронаплавка, наплавка в среде СО2, припекание порошков.

Подходит метод НЭЧ, другие не подходят по виду поверхности восстановления (упрочнения).

Хромирование:

Также не подходит не один метод, так ка не совпадают виды поверхности восстановления (упрочнения).

Железнение:

Не подходит не один метод, так как не совпадают виды поверхности восстановления (упрочнения).

По показателям физико-механических свойств.

Способ металлизации МЭД не подходит из-за низких показателей коэффициента выносливости, сцепляемости и долговечности.

По технико-экономическим и прочим показателям:

В принципе способы ремонта сваркой НРад, НСФпл и микронаплавкой НЭИ имеют примерно одинаковую себестоимость, все же предпочтение отдадим способу электроимпульсной микронаплавки, т.к сварка НРад, является малопроизводительной, а НСФпл требует термической обработки.

В результате выбираем способ электроимпульсной наплавки.

Дефект №3 (Износ отверстия под втулку верхней головки шатуна).

Данный дефект устраняется растачиванием отверстия верхней головки шатуна под следующий ремонтный размер. А при значительном износе выбираем способ восстановления.

Ручная и механизированная сварка под слоем флюса:

Способы НРэ, НСФпл, НСФсер, НСФтмо, НСФпг и НСФлп не подходят из-за большого минимально допустимого покрытия.

Способ НРад не подходит по виду материала изношенной детали.

Остается способ НРг.

Вибродуговая наплавка:

Не подходит не один из способов, из-за большого минимально допустимого диаметра восстанавливаемой поверхности.

Микронаплавка, наплавка в среде СО2, припекание порошков.

Подходят способы НУГ и НУГар.

Остальные способы не подходят из-за большего минимально допустимого диаметра поверхности восстановления.

Хромирование: В принципе для восстановления детали подходит почти любой способ хромирования, но заглядывая вперед отметим что хромированные детали в дальнейшем трудно обработать (механически), так что применение хромирования нежелательно.

Железнение:

Способы Жвв и Жпр не подходят по виду поверхности восстановления.

Способы Жв, Жвх, Жуз, Жспл, Жмк и Жпор подходят для нашей детали.

По показателям физико-механических свойств:

Способ металлизации МЭД не подходит из за низких показателей коэффициента выносливости, сцепляемости и долговечности.

Способ сварки НРг не подходит из-за низкой долговечности.

По технико-экономическим и прочим показателям: Выбираем из способов микронаплавки (НУГ и НУГар) и железнения самый дешевый по себестоимости ремонта. Ими оказываются микронаплавка способами НУГар и железнение методом Жспл, но при дальнейшем рассмотрении характеристик этих двух способов делаем вывод, что применения способа железнения с нанесением сплава более выгодно, значит выбираем этот способ. Описание способа восстановления деталей хромированием в саморегулирующимся электролите.

Процесс нанесения покрытий на детали включает в себя три группы операций: подготовку детали к нанесению покрытия, нанесения покрытия и обработку детали после покрытия.

Подготовка деталей к нанесению покрытия включает в себя следующие операции: механическую обработку поверхностей, подлежащих наращиванию; очистку деталей от окислов и предварительное обезжиривание; монтаж деталей на подвесное приспособление; изоляцию поверхностей, не подлежащих покрытию; обезжиривание деталей с последующей промывкой в воде; анодную обработку (декапирование).

Предварительная механическая обработка детали имеет цель придать восстанавливаем поверхностям правильную геометрическую форму. Производится эта обработка в соответствии с рекомендациями по механической обработке соответствующего материала.

Очистку деталей от окислов с цель “оживления” поверхности проводят обработку поверхности путем обработки шлифовальной шкуркой или мягкими кругами с полировальной пастой. Предварительное обезжиривание деталей производят путем промывки в растворителях (уайт-спирите, дихлорэтане, бензине и др.).

При монтаже деталей на подвесное приспособление необходимо обеспечить надежный их электрический контакт с токоподводящей штангой, благоприятные условия для равномерного распределения покрытия по поверхности детали и для удаления пузырьков кислорода, выделяющихся при электролизе.

Для защиты поверхностей, не подлежащих наращиванию, применяют: шапон-лак в смеси с нитроэмалями в соотношении 1: 2, нанося его несколько слоев при послойной сушке на воздухе; чехлы из полихлорвинилового пластиката толщиной 0,3-0,5 мм; различные футляры, втулки, экраны, изготовленные из неэлектропроводных кислотостойких материалов (эбонит, текстолит, винипласт и т.п.).

Окончательное обезжиривание подлежащих наращиванию поверхностей деталей наиболее часто производят путем электрохимической обработки в щелочных растворах следующего состава: едкий натр - 10 кг/м3, сода кальцинированная - 25, тринатрийфосфат - 25, эмульгатор ОП-7 3-5 кг/ м3. Режим обезжиривания: температура 70-80С, плотность тока 5-10 А/дм2, длительность процесса 1-2 мин.

Детали при электрохимическом обезжиривании завешивают на катодную штангу. При электролизе на поверхности детали выделяется водород, который химически срывает жировую пленку и таким образом ускоряет процесс омыления и эмульгирования жиров. Во избежание наводораживания сменяют полярность на обратную и в течении 0,2-0,3 мин обрабатывают детали на аноде.

Детали простой формы можно обезжиривать также путем протирки кашицей венской извести, состоящей из смеси окиси кальция и окиси магния с добавками 3% кальцинированной соды и 1,5% едкого натра. Эту смесь разводят водой до пастообразного состояния и наносят на детали волосяными кистями.

После обезжиривания детали промывают в горячей, а затем в холодной воде, Сплошная, без разрывов, пленка воды на обезжиренной поверхности свидетельствует о хорошем качестве удаления жиров.

Декапирование (анодную обработку) производят для удаления тончайших оксидных пленок с поверхности детали и обеспечения наиболее прочного сцепления гальванического покрытия с подложной. Эта операция непосредственно предшествует нанесению покрытия.

При хромировании анодную обработку производят в основном электролите. Детали завешивают в ванну для хромирования и для прогрева выдерживают 1-2 мин без тока, а затем подвергают обработке на аноде в течении 30-45 с при анодной плотности тока 25-35 А/дм2. После этого не вынимая детали из электролита, переключают их на катод и наносят покрытие.

В ряде случаев перед декапированием осталиваемые детали подвергают анодному анодному травлению. Анодному травлению перед декапированием подлежат детали, не подвергающиеся механической обработке. Травление в этом случае происходит в специальной ванне с хлористым электролите.

Обработка деталей после нанесения покрытия включает следующие операции: нейтрализацию деталей от остатков электролита; промывку деталей в холодной и горячей воде; демонтаж деталей с подвесного приспособления и удаление изоляции; механическую обработку детали до требуемого размера; термическую обработку (при необходимости).

Этот порядок выполнения заключительных операций сохраняется при нанесения покрытий из любых электролитов, однако конкретные процессы имеют некоторые особенности.

Так, если детали подвергались хромированию, то их сначала промывают в ванне с дистиллированной водой (для улавливания электролита), а затем - в проточной воде, после чего погружают на 0,5-1 мин в 3-5%-ный раствор кальцинированной соды (для нейтрализации остатков электролита) и окончательно промывают в теплой воде. Затем детали снимают с подвесных приспособлений, удаляют с них изоляцию и сушат в сушильном шкафу при температуре 120-130С. В некоторых случаях для снятия внутренних напряжений в хромовых покрытиях детали проходят термообработку с нагревом до 180-200С в масляной ванне и выдержкой при этой температуре в течении 1-2 ч.

Вообще сущность любого метода хромирования заключается в переносе ионов металла на ремонтируемую поверхность детали, которая является катодом. Любые способы хромирования протекают в ваннах в растворах электролитов (холодных и горячих).

Хромирование саморегулирующемся электролите отличается от других видов тем, что при введении в электролит вместо серной кислоты трудно растворимых солей сернокислого стронция SrSO4 и кремнистого калия К2SiF6 в количестве, превышающем их растворимость, электролит становится устойчивым, так как автоматически поддерживается постоянная концентрация ионов SO4 и SiF6. При избытке в электролите указанных солей, превышающих их растворимость, часть солей будет находиться в растворе в виде диссоциированных ионов, а часть на дне ванны в виде твердой фазы. При изменении концентрации хромового ангидрида концентрация ионов SO4 и SiF6 будет автоматически поддерживаться постоянной за счет частичного растворения солей. Таким образом, необходимость в частых корректировках электролита отпадает. Применяется следующий состав электролита (г/л): хромовый ангидрид 200-300; сульфат стронция 5,5-6,5; кремнефторид калия 18-20. Плотность тока Dк=50-100 А/дм2; t=50-70 C; выход по току 17-18%.

В саморегулирующимся электролите можно получать все три вида хромовых осадков. Скорость отложения осадка при плотности 60 А/дм2 и t=55-65 C достигает 45-50 мкм/ч.

Вследствие агрессивности электролита свинцовая футировка ванны не пригодна из-за сильного растравливания. Хорошим материалом для ванн является нержавеющая сталь 1Х18Н9. В качестве материала для анодов применяют свинцово-оловянистые сплавы, из которых лучшим является припой ПОС-10. По причине агрессивного действия электролита на металл необходима тщательная защита поверхности деталей, не подлежащих хромированию. Изоляционными материалами здесь могут быть винипласт, полихлорвинил, плестиглас, а также специальные составы.

В настоящее время разработаны и исследованы новые составы саморегулирующихся электролитов, значительно устраняющие недостатки сульфато-кремнефторидного электролита. Для примера привожу состав сульфато-кремнефторидного электролита с добавкой бихромата калия. (г/л): CrO3=250; SrSO4=6-8; K2SiF6=20; K2Cr2O7=110; режим хромирования Dк=30-100 А/дм2; t=40-70 C; выход по току 17-24%. При применении данного электролита получение блестящих осадков возможно при пониженных температурах и плотностях тока, коррозионная активность активность электролита значительно снижается.

2.3 Разработка технологического процесса

Перед разработкой технологического процесса восстановления детали выбираю базы. Проводим основные операции по подготовке детали к восстановления.

Разрабатываем схему технологического процесса. Последовательность операций устанавливают с учетом особенностей своей детали.

Схема технологического процесса:

05

Моечная. Мойка и очистка валика от масла и грязи.

Моечная машина.

10

Дефектовочная. Выявление изношенных поверхностей

Штангенциркуль, нутример.

15

Наплавочная. Наплавка поверхности поверхности торцов нижней головки шатуна.

Установка для автоматической наплавки.

20

Предохранительная. Защита поверхностей от действия электролита.

Установка для защиты винипластовыми материалами.

25

Наращивающая. Наращивание торцов нижней головки шатуна

Гальваническая ванна.

30

Предохранительная. Защита поверхностей от действия электролита.

Установка для защиты винипластовыми материалами.

35

Наращивающая. Восстановление оверсти я верхней головки шатуна.

Гальваническая ванна.

40

Слесарная. Рассверливание и хонингование нижней головки шатуна после наплавки.

Слесарный станок и инструмент.

45

Шлифовальная. Шлифовка верхней и нижней головок шатуна.

Круглошлифовальный станок.

50

Токарный станок

Нормирование операций, связанных с восстановлением поверхностей детали. Техническая норма штучно-калькуляционного времени (в минутах) определяется по формуле:

tшк=to+ tв +tобс+tот+tп-з/n,

где to - основное технологическое время, необходимое для целенаправленного воздействия на деталь (время на хромирование или наплавку);

tв - вспомогательное время, затрачиваемое на установку и снятие детали, измерение размеров, подвод, отвод инструмента и т.д.;

tобс - время организационного и технологического обслуживания рабочего места;

tот - время на отдых и личные надобности работающего;

tп-з - время на подготовительные и заключительные работы, которое рассчитывают на партию деталей;

n - число деталей в партии.

Время (to+ tв) называется оперативным toп, а время (tобс+tот) - дополнительным и берется впроцентах от toп. Тогда

tшт=(1+к/100) toп,

где tшт - штучное время, мин;

к - коэффициент, учитывающий время на обслуживание рабочего места,%.

tшк= tшт+tп-з/n.

Нормирование операции хромирования цилиндрической поверхности.

Основное время нахождения деталей в ваннах (время наращивания металла), мин:

,

где h - толщина слоя покрытия 0,2мм;

- плотность осаждаемого металла 7,8;

Pк-катодная плотность тока, Рк=60 А/дм2;

С - электрохимический эквивалент с=0,324 г/А ч;

- выход по току =13%;

Вспомогательное время равно: ,

где - вспомогательное время, перекрывающееся основным,=0 мин;

- вспомогательное время, не перекрывающееся основным временем, =0,17 мин;

Норма времени на операцию, отнесенная к одной детали, равна:

Нормирование операции электроимпульной наплавки торцов нижней головки шатуна

Основное время при наплавке, мин:

,

где F - площадь поверхности 50 мм;

l - длина шва, 13мм;

- плотность осаждаемого металла 7,8;

Kп - коэффициент разбрызгивания металла 0,9;

С - электрохимический эквивалент с=0,324 г/А ч;

-выход по току =13%;

н - коэффициент расплавления 6 г/А ч;

I-сварочный ток, 200 А;

- коэффициент, учитывающий сложность работы (=1)

Вспомогательное время равно: мин.

Дополнительное время составляет 5% от оперативного времени (tо + tв)

Подготовительно-заключительное время принимают 15 мин на партию деталей. Норма времени на операцию, отнесенная к одной детали, равна:

мин

Оценка затрат на восстановление детали. Оценка затрат на восстановление методом хромирования в саморегулирующимся растворе электролита. Затраты на восстановление деталей группируются в себестоимости через следующие калькуляционные статьи:

где - стоимость расходных материалов,

= Км = 0,5 16,37=8,185 коп;

- основная заработная плата производителя,

=tшт Сч=57,6 17,053/60 = 16,37 коп;

- дополнительная заработная плата,

= KЗПд =0,15 16,37=2,45 коп;

- отчисления на социальное страхование:

=KCCТ (+) = 0,15 (16,37+2,45) = 2,82 коп;

- накладные цеховые расходы,

=Кцр =1 16,37=16,37 коп;

- общезаводские расходы,

= КОЗР =0,6 16,37=9,822 коп;

- расходы на эксплуатацию и содержание оборудования,

= КРС70 = 0,65х16,37=10,64 коп;

- прочие расходы,

=0,01 66,65=0,66 коп; 67,32 коп.

Оценка затрат на восстановление методом электроимпульсной наплавки.

Затраты на восстановление деталей группируются в себестоимости через следующие калькуляционные статьи:

где - стоимость расходных материалов,

= Км =1,1 0,95=1,05 коп;

- основная заработная плата производителя,

=tшт Сч=75,4 0,756/60 = 0,95 коп;

- дополнительная заработная плата,

= KЗПд =0,15 0,95=0,14 коп;

- отчисления на социальное страхование

=KCCТ (+) =0,15 (0,95+0,14) = 0,1635 коп;

- накладные цеховые расходы,

=Кцр =1 0,95=0,95 коп;

- общезаводские расходы,

= КОЗР =0,6 0,95=0,57 коп;

- расходы на эксплуатацию и содержание оборудования,

= КРС70 = 0,65х0,95=0,62 коп;

- прочие расходы,

=0,01 4,44 =0,044 коп;

4,48 коп.

Заключение

В процессе выполнения курсовой работы были углублены и закреплены знания по дисциплине. Был выполнен расчёт для определённого задания и получены практические знания по проектированию процесса восстановления детали автомобиля. В соответствии с заданием на курсовую работу разработан технологический процесс восстановления шатуна двигателя ВАЗ-2108 и выбрано необходимое техническое оборудование, а также рассчитаны режимы и нормы времени на механическую обработку.

Целью курсовой работы являлось повышение практических знаний по проектированию процесса восстановления детали автомобиля ВАЗ-2108.

Задачами курсовой работы являлись:

Обзор литературы по теме курсовой работы "Технология ремонта шатуна автомобиля ВАЗ-2108".

Изучение назначения, типов и видов кривошипно-шатунных механизмов.

Составление технологии ремонта и восстановления шатуна автомобиля ВАЗ-2108.

Современный этап научно-технического прогресса, да и любые другие исторические этап характеризующиеся серьёзными изменениями, происходящими в технике, технологии и организации производства, требуют от человека любой профессии мобильности трудовых функций, способности адаптироваться к новой, современной технике и технологии. Этого требует время, это необходимо для того, чтобы решить проблему социальной незащищённости выпускников школ и вузов.

На основе проведенного исследования сформулируем следующие выводы: в результате данной работы нами разработана технология ремонта и восстановления шатуна автомобиля ВАЗ-2108 и разработана схема технологического процесса.

Литература

1. Автомобили. Под ред. А.В. Богатырева. - М.: Колос, 2001. - 496 с.

2. Автотранспорт. Эксплуатация. Обслуживание. Ремонт-журнал 2005-2007 г. г.

3. Болотов А.К., Лопарев, Л.А. Конструкция автомобилей. - М.: Колос, 2006. - 352 с.

4. Вахламов В.К. Техника автомобильного транспорта. Подвижный состав и эксплуатируемые свойства. - М.: Издательский центр "Академия", 2004. - 528 с.

5. Воловик Е.Л. "Справочник по восстановлению деталей", Колос, 1981.

6. Долгополов Б.П., Митротрохин, Н.Н., Скрипников, С.А. Методические указания по выполнению курсовой работы по курсу "Технология ремонта автомобилей и дорожных машин", Москва, 1996.

7. Дубина В.В. Кривошипно-шатунный и газораспределительный механизмы двигателя внутреннего сгорания. / В.В. Дубина, Н.П. Чикунов. - Саранск: Изд-во Морд. ун-та, 2003. - 176 с.

8. Иншаков А.П., Карпов, А.М., Славкин, и др. Практикум по конструкции автомобилей. - Саранск: Изд-во Морд. ун-та, 2003. - 124 с.

9. Карагодин В.И., Митрохин, М.Н. Ремонт автомобилей и двигателей. - М.: Мастерство, Высш. шк., 2001. - 496 с.

10. Кутьков Г.М. Автомобили. Теория и технологические свойства. - М.: Колос С, 2004. - 504 с.

11. Малдык Н.В., Зелкин, А.С. Восстановление деталей машин: Справочник. - М.: Машиностроение, 1989 - 420 с.

12. Основы технологии производства и ремонта автомобилей: Метод. указания. / Сост. А.Д. Полканов, ВоГТУ: - Вологда, 1999 г.

13. Практикум по конструкции автомобилей / А.П. Иншаков, А.М. Карпов, В.И. Славкин и др., Под общ. ред. А.П. Иншакова. - Саранск: издательство Морд. ун-та, 2003. - 124 с.

14. Родичев, В.А. Устройство и техническое обслуживание легковых автомобилей. Учебник водителя автотракторных средств категории "В".3-е изд., стер. - М.: Издательский центр "Академия", 2005. - 80 с.

15. Справочник технолога авторемонтного производства. /Под редакцией Г.А. Малышева. - М.: Транспорт, 1977 г.

16. Шадричев, Е.А. "Основы технологии автостроения и ремонта автомобилей", Машиностроение, 1976.

17. Шестопалов, К.С. Легковые автомобили. М.: ДОСААФ, 1983. 208 с.

18. Шестопалов, С.К. Устройство, техническое обслуживание и ремонт легковых автомобилей. - М.: Профобриздат., 2001. - 544 с.

19. Ресурсы интернета: http://www.techno.stack.net - федеральный портал "Инженерное образование".

20. Ресурсы интернета: http://www.inauka.ru - портал "Известия науки".

21. Ресурсы интернета: http://www.w 45.ru - библиотека автомобилиста.

22. Ресурсы интернета: http: // www.2a2. ru - справочник по автомобилям.

23. Ресурсы интернета: http: // www. vaz-service. ru

Страницы: 1, 2, 3



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты