Буксировка аварийного судна в ледовых условиях
исунок 2.6 - Планшет для ведения прокладки пути судна при плавании во льдах

Как показал опыт, использование данного планшета значительно облегчает работу штурмана, сокращая время расчетов генерального курса и пути в 2-3 раза. Планшет можно изготовить самостоятельно по образцу в масштабе радиуса 1 кб в 1 см.

Необходимым условием безаварийного судовождения во льдах является знание скорости судна в любой момент времени. При ледовом плавании вдоль побережья в условиях постоянного радиолокационного и визуального контакта с берегом имеется возможность определить место судна с круговой ошибкой 1-4 кб. При отсутствии такого контакта, а также ненадежности радиотехнических средств возникает проблема измерения скорости судна во льдах. Знание скорости важно и при пятиминутном счислении пути судна во льдах, когда требуется корректировка глазомерных определений скорости уточненными данными.

В ходе практики ледового плавания выработан ряд способов определения скорости судна во льдах. Одним из основных принципов является измерение промежутка времени, за которое судно проходит определенное расстояние (базу). В качестве базы используется вся длина судна.

Определение скорости судна этим способом происходит таким образом: впереди по курсу выбирается какая-либо приметная льдина; когда эта льдина поравняется с форштевнем, включается секундомер; когда льдина поравняется со срезом ахтерштевня, секундомер останавливается; по пройденному расстоянию L (длине судна) и времени его прохождения t определяется скорость судна.

Для упрощения этих расчетов можно составить таблицу, на основании которой по времени прохождения длины данного конкретного судна получают скорость движения. Иногда для определения скорости движения судна в узлах используют соотношение 2L/t, точность которого вполне удовлетворительная - 0,1 уз.

Рисунок 2.7 - Общий вид визиров на борту судна для определения скорости хода во льдах

Чтобы избежать ошибок в определении начала или конца измерения скорости, на судах ледового плавания снаружи крыльев мостика по каждому борту устанавливаются визиры (рис.2.7). Порядок определения скорости судна по визирам аналогичен изложенному выше с той лишь разницей, что вместо длины судна определяется расстояние между визирными линиями, отсекающими отрезок пути на льду на уровне действующей ватерлинии. Следует только учитывать, что мерное расстояние зависит от осадки судна, поэтому целесообразно иметь таблицу мерных расстояний между визирными линиями с учетом загруженности судна.

В практике ледового плавания для определения скорости судна используются радиолокационные станции. Однако для получения достаточной точности измерений при использовании РЛС необходимо удержание судна на курсе, что при плавании во льдах не всегда возможно. Кроме того, на экране РЛС трудно идентифицировать выбранную отметку вследствие однообразия изображения льда. При использовании РЛС для определения скорости судна наиболее удобен и точен способ, когда отметка на экране выбирается на курсовых углах 0 или 180°. На пятимильной шкале этот способ дает удовлетворительные результаты.

Для измерения скорости судна во льдах могут использоваться индукционные лаги, отличительной особенностью конструкции которых является приемное устройство, не выступающее за корпус судна. Последнее обстоятельство имеет большое значение в условиях ледового плавания. Следует только помнить, что индукционные лаги проектировались как измерители относительной скорости для плавания по чистой воде, поэтому в условиях ледового плавания при определении скорости судна возможны погрешности, вызванные изменением поля скоростей обтекания приемного устройства, намагниченности корпуса судна (влияние ударов о лед), магнитной проницаемости среды и другие. Эти явления недостаточно пока изучены, и опыт использования индукционных лагов при плавании во льдах еще невелик.

Рисунок 2.8 - Движение отметки на экране РЛС вблизи траверзных курсовых углов при постоянном курсе судна

Для измерения скорости судна во льдах перспективными можно считать лаги, работа которых основана на эффекте Допплера. Как известно, допплеровские лаги в зависимости от диапазона используемых частот и среды, в которой распространяются излученные и отраженные колебания, делятся на гидроакустические и радиолаги.

Работа первых из них основывается на измерении скорости сигнала, отраженного от морского дна, вторых - сигнала, отраженного от поверхности воды или льда. Эти особенности и определяют возможности их применения при плавании во льдах. Чтобы защитить антенны гидроакустических лагов от ударов о лед, антенны размещают внутри корпуса без выреза обшивки. На ледоколах типа "Капитан Сорокин" гидроакустические антенны, не выступающие за обшивку корпуса, защищены перфорированными пластинами. Следует помнить также, что попадание льда под корпус судна может вызвать рассеивание мощности сигнала гидроакустического лага (а значит, ошибку в определении скорости судна, а при использовании допплеровского радиолага во льдах при смене подстилающей поверхности (лед - вода) из-за смещения спектра частот отраженных колебаний возникает дополнительная ошибка (около 7%).

3. Определение сопротивления движению судна во льдах и скорости буксировки

3.1 Общие положения

Морская буксировка может быть запланированной и вынужденной. Все расчеты, связанные с плановой буксировкой, выполняются заблаговременно в КБ с учетом особенностей предстоящей операции: числа и типа буксирных судов и буксируемых объектов, вида буксирной линии (однородная, неоднородная, несимметричная и пр.), предполагаемых погодных условий, районов плавания (узкости, мелководье). Эти расчеты выполняются по существующим методикам, одобрены регистром России, и выдаются в виде чертежей и рекомендаций для выполнения буксировочной операции.

При вынужденной буксировке капитан буксировщика обязан выполнить расчеты скорости буксировки, а также элементов буксировочной линии (длины, толщины троса и его провиса). Задача может свестись к выбору безопасной скорости буксировки, при которой прочность имеющегося буксирного троса оказалась бы достаточной. Поскольку при вынужденной буксировке капитан не всегда может располагать точными сведениями о буксируемом объекте, расчеты приходится вести с использованием простейших эмпирических формул.

В этой части диплома приведен способ расчета сопротивления движению судна во льдах и скорости буксировки, пригодный для выполнения расчетов в судовых условиях.

Максимальной скоростью при буксировке будет та, при которой сопротивление буксирующего и буксируемого судов в сумме составят силу, равную упору винта:

, (3.1)

где Pm-максимальный упор винта буксировщика, кН;

R0-суммарное сопротивление, кН;

R1-сопротивление буксирующего судна, кН;

R2-сопротивление буксируемого судна, кН.

Расчет буксировки производится в следующем порядке:

Определяется максимальный упор винта буксировщика или сопротивление движению судна при максимальной скорости, которое равно упору винта при швартовом режиме.

Определяется сопротивление буксирующего и буксируемого судов на различных скоростях буксировки.

Составляется таблица и чертятся графики R1, R2, R0 зависимости сопротивлений от скорости буксировки, по которым определяются максимальная скорость буксировки и тяга на гаке.

3.2 Расчет упора винта буксировщика

Для приближенной оценки упора винта буксировщика может быть использована формула Регистра России расчета упора винта на швартовах:

кН, (3.2)

где Рm - упор винта, кН;

Ni - мощность главной силовой установки, кВт,

3.3 Расчет сопротивления судов

Сопротивление буксирующего судна равно сумме сопротивлений:

, (3.3)

где RСТ - сопротивление трения, кН;

RС - остаточное сопротивление, кН;

Rвозд - сопротивление воздуха, кН;

RВ-сопротивление от волнения, кН,

Rл - ледовое сопротивление, кН (рассчитываем для битого льда, сплоченностью 6 баллов)

Сопротивление буксируемого судна отличается от сопротивления буксирующего судна дополнительным сопротивлением застопоренного винта RЗ. В и буксирного троса RТР, кН:

. (3.4)

Сопротивления можно рассчитать по эмпирическим формулам:

Сопротивление трения (в кН):

, (3.5)

где х - плотность воды, кг/м3 (плотность соленой воды - 1025 кг/м3);

S - площадь смоченной поверхности судна, м2;

Кф - коэффициент трения.

Для транспортных судов и плавбаз:

где Lв - длина действующей ватерлинии при средней осадке, м; В - ширина, м; Тср - средняя осадка, м (используем по Тср в грузу). Для буксирующего судна:

2568,1 м2

Для буксируемого судна:

1383,4 м2

Сопротивление остаточное (в кН):

, (3.6)

где Vб - скорость судна при буксировке, м/с;

д - коэффициент полноты водоизмещения;

Dв - водоизмещение судна, т;

L - длина судна, м.

Воздушное сопротивление (в кН):

, (3.7)

где Ко-коэффициент обтекания, при ветре, параллельном ДП, равен 0,8);

х=1,25-плотность воздуха, кг/м3;

AН-проекция надводной части поверхности судна на плоскости

мидельшпаунгоута, м;

vB-скорость встречного ветра, м/с;

vб-скорость буксировки, м/с.

Сопротивление застопоренного винта (в кН):

, (3.8)

где dВ-диаметр винта, м.

3.4 Чистое ледовое сопротивление движению судна в битых льдах

Процесс движения судна в битых льдах очень сложен, составить его аналитическое описание не представляется возможным. Поэтому расчетные зависимости, связывающие сопротивление судна в битых льдах со скоростью движения, размерениями и параметрами льда, создавались на основании эмпирических данных, полученных в ходе натурных экспериментов. Основываясь на исследованиях, чистое сопротивление движению судна в битых льдах представим в следующем виде:

(3.9)

Где r - протяженность битого льда, м;

h - толщина битого льда, м;

- плотность льда, т/м3;

fт - коэффициент трения борта о лед (fт = 0,08ч0,15);

- коэффициент полноты действующей ватерлинии;

н - коэффициент полноты носовой части действующей ватерлинии;

0 - угол входа носовой ветви действующей ватерлинии, град;

- безразмерные коэффициенты (табл.3.1);

Sсж - сила сжатия, баллы;

g - ускорение свободного падения, м/с2.

Таблица 3.1 - Значения коэффициентов

Коэффициенты

Сплоченность льда, баллы

4

6

8

10

0

0

7 10-2

7,4 10-2

0,93

2,54

5,70

8,2

4,3

4,3

4,3

4,3

-

-

-

30 10-2

Транспортное судно будет испытывать большее сопротивление, чем ледокол из-за наличия цилиндрической вставки. Поэтому ледовое сопротивление судна можно выразить:

, (3.10)

гдеRлч - ледовое сопротивление, рассчитанное без учета влияния цилиндрической вставки (в кН);

lцв - длина цилиндрической вставки, м;

Kцв - коэффициент, равный 0,4.

Расчеты сопротивлений судов сводим в таблицу 3.2

3.4 Определение максимальной скорости буксировки и силы тяги на гаке

По данным таблицы 3.2 строим графики сопротивлений R0 и R2 в прямоугольной системе координат, затем используют их для определения максимальной скорости буксировки и силы тяги на гаке (Рисунок 3.1).

Рисунок 3.1 - Определение тяги на гаке и скорости буксировщика

Максимальный упор гребного винта буксировщика равен 829,6 кН. Требуется определитьVбmax и силу тяги на гаке Тг.

По оси ординат откладываем отрезок "0a", равный 829,6 кН. Через точку "a" проводим линию, параллельную оси абсцисс, до пересечения с кривой суммарного сопротивления в точке "b". Из точки "b" опускаем перпендикуляр на ось абсцисс и получаем при их пересечении точку "c". Отрезок "0c" представляет собой максимальную скорость буксировки Vбmax, которая равна 11,3 уз.

Для определения тяги на гаке отыскиваем точку пересечения перпендикуляра "bc" с кривой сопротивления буксируемого судна. Обозначив эту точку буквой "d", проведем через нее линию, параллельную оси абсцисс, до-пересечения ее с осью ординат в точке "e". Отрезок "0e" определяет тягу на гаке Тг, которая равна 380 кН. Это и есть усилие, на которое следует подбирать буксирный трос.

4. Разработка буксирного устройства и кранцевой защиты для обеспечения буксировки аварийного судна транспортным судном

4.1 Буксирное устройство на ледоколах

При проектировании буксирного устройства и кранцевой защиты для транспортного судна я основывался на принципиальной схеме буксирного устройства судов ледокольного типа (рис.4.1 и рис.4.2).

Основные составляющие:

буксирная лебедка с емкостью барабана около 500-700 м буксирного троса с канатоукладчиком и автоматикой для удержания заданной длины и тягового усилия в канате;

амортизатор (демпфер) гидродинамического или иного типа;

две буксирные серьги - одна у самого кормового выреза, другая на палубе по линии буксирного троса между лебедкой и кормовой серьгой;

кормовой вырез достаточной глубины для предотвращения выхода из него форштевня буксируемого судна на поворотах, оборудованный надежными мягкими кранцами.

На мощных ледоколах кранцы, как правило, устанавливаются в два яруса, причем кормовые кранцы для большей износоустойчивости покрываются металлической кольчужной сеткой.

4.2 Необходимые составляющие

Зачастую, в случаях аварийной буксировки на транспортном судне выбор снабжения ограничен. Исходя из этого, при проектировке буксирного устройства я использовал элементы, имеющие достаточно широкое применение на судах транспортного флота.

1 - лебедка; 2 - стопор Булливана; 3 - буксирная серьга;

4 - блок Николаева; 5 - бензель

Рисунок 4.1 - Буксирное устройство на ледоколах типа "Капитан Белоусов"

1 - лебедка; 2 - демпфер; 3 - оттяжка;

4 - блок Николаева; 5 - буксирная серьга; 6 - бензель

Рисунок 4.2 - Буксирное устройство на ледоколах типа "Арктика"

4.2.1 Выбор буксирного троса

Запас прочности буксирной линии должен быть равен 5Т
г, если Тг не превышает 100 кН, или 3Тг, если тяга на гаке более 100 кН.

Из построенного графика (рисунок 3.1) определим тягу на гаке Тг = 380 кН - это усилие, по которому будет подбираться буксирный трос. Запас прочности равен 3 х 125 кН = 1480 кН, т.к тяга на гаке более 100 кН.

При вынужденной буксировке диаметр буксирного троса, линейную плотность можно определить, пользуясь сертификатом имеющегося на судне троса или таблицами ГОСТа. Исходя из условий нашей задачи, я выбрал "Канат стальной двойной свивки типа ЛК-О ГОСТ 3069-80":

Разрывная прочность троса Рр = до 1624 кН;

Диаметр стального троса и = 60,5 мм;

Линейная плотность троса q = 14, 25 кг/м.

4.2.2 Элементы кранцевой защиты

В последнее время на судах наибольшее распространение получили пневматические кранцы
(рисунок 4.3), которые обладают большой энергоемкостью и обеспечивают малые контактные давления на корпус судна. Бескамерные кранцы имеют резиновую оболочку, укрепленную для восприятия больших нагрузок синтетическим или металлическим кордом. Толщина оболочки в зависимости от размеров кранцев составляет 9-30 мм.

Одной из самых распространённых моделей кранцев является модель НКВ-3:

Габариты 2200х3800 мм

Внутренне рабочее давление 0,8 - 1,0 Мпа

Энергия поглощаемая кранцем 320 кДж

Нагрузка, воспринимающая при 50% сжатии 1100 кН

Исполнение пневматические, бескамерные

Средний срок службы 7 лет

1, 3 - клапаны; 2 - оболочка; 4, 5 - скобы; 6 - огон; 7, 8, 9 - меридианальные и окружные канаты; 10, 11 - резиновые трубки; 12 - строп; 13 - скоба; 14 - шины; 15 - фланец; 16 - подкрепляющее кольцо; 17 - корд; 18 - резина; 19 - шпилька; 20 - съемный стакан; 21 - внутренний обух; 22 - цепь; 23 - наружный рым.

Рисунок 4.3 - Пневматический бескамерный кранец

4.2.3 Блок конструкции С.В. Николаева

Немаловажной составляющей
буксирного устройства является блок конструкции Н.М. Николаева или их набор для буксировки различных судов.

Он состоит из шкива 1, щек 2 и болта 3. Брага заводится на шкив, а буксирный трос 4 крепится за болт 3; таким образом, блок и строп-брага 5 постоянно пристопорены к буксирному канату. Принцип работы блока заключается в следующем: при рысканьи буксируемого судна блок катается по браге, поэтому обе ветви стропа-браги все время натянуты, вследствие чего усилие в каждой ветви значительно меньше усилия в буксирном тросе.

Рисунок 4.4 - Устройство блока Николаева

Рис.4.5 показывает работу блока Николаева. Этот блок применялся широко при буксировках ледоколами, но он не пригоден для длительных морских буксировок, так как, катаясь по браге, быстро ее перетирает.

В случае отсутствия на судне блока Николаева, вместо него может быть использована якорная скоба.

Рисунок 4.5 - Работа блока Николаева.

4.3 Сборка кормовой кранцевой защиты

Перед началом сборки буксировщик подходит кормой к носу буксируемого судна (рис.4.7). Для переноса кранцев на корму буксировщика и последующей заводки используются грузовые стрелы обоих судов. В дополнение к ним, я предлагаю использовать оттяжки из тросов, пропущенные через клюзы буксируемого судна и заведённые на якорную лебёдку.

Если подойти таким образом невозможно, то возможен и другой вариант заводки (см. рисунок 4.6):

Рисунок 4.6 - Альтернативный метод сборки кранцевой защиты

Рассмотрим конструкцию кранцевой защиты (рис.4.8). Для её крепления на фальшборт буксировщика привариваются скобы, за которые и будут подвешиваться кранцы с помощью такелажных цепей.

Порядок сборки следующий:

За корму буксировщика заводится и вывешивается горизонтальный кранец.

Вывешивается пара вертикальных кранцев. Здесь я хочу обратить внимание на то, что перед заводкой в них немного спускается воздух. Это делается для того, чтобы после соединения кранцев цепями восстановить в них первоначальное давление, тем самым добиться более плотного контакта кранцев друг с другом. Исходя из этого, для более удобной их последующей подкачки, клапаны должны находиться вверху.

При помощи прочных такелажных цепей, соединённых с рымами кранцев, и талрепов сверху и снизу стягиваются вертикальные кранцы.

Таким же образом снизу соединяются вертикальные кранцы с горизонтальным.

Для большей фиксации конструкции за нижние рымы кранцы крепятся к скобам у основания фальшборта.

Восстанавливается первоначальное давление в кранцах.

1 - скоба; 2 - фальшборт; 3 - такелажная цепь; 4 - кормовой клюз; 5 - талреп

Рисунок 4.8 - Кранцевое защитное устройство кормы

Для уменьшения износа кранцев можно воспользоваться металлической кольчужной сеткой, защитив ею рабочую поверхность кранцев от непосредственного соприкосновения с носом буксируемого судна.

После сборки кранцевой защиты через кормовой клюз на буксируемое судно заводится буксировочный трос и буксируемое судно втягивается носовой оконечностью между вертикальных кранцев.

1 - кранцевая защита; 2 - киповая планка; 3 - швартовный кнехт; 4 - фиксирующие тросы

Рисунок 4.9 - Схема фиксации носовой оконечности в корме буксировщика

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты