Расчет на прочность крыла большого удлинения и шасси транспортного самолета АН–70
роведем проверку построения эпюр нагрузок на крыло в корневом сечении.

Необходимо учесть воздействие сосредоточенных массовых сил :

(кг);

, ;

,

кН,

%;

кНм,
%.

Затем строим эпюры ,, (рис. 8)

Рис. 8

При построении эпюры приведенных моментов вначале задаемся положением оси приведения. Она проходит через переднюю кромку крыла параллельно оси “z” Строим эпюру погонных моментов от воздействия распределенных нагрузок , и .

Для погонных моментов:

,

где ,

тогда

.

- расстояния от точек приложения нагрузок до оси приведения.

,

.

Момент считаем положительным, если он действует против часовой стрелки.

Интегрируя эпюру , получаем приведенные моменты от воздействия распределенных нагрузок. Схема расчета имеет вид:\

;

.

Полученные результаты заносим в таблицу 3:

Таблица 3

Проведем проверку построения эпюры приведенных моментов в корневом сечении без учета сосредоточенных массовых сил.

,кНм

%.

Приведенный момент от воздействия сосредоточенных масс находим по формуле:

где - расстояние от центра тяжести -того бака до оси приведения.

Строим суммарную эпюру (рис. 9)

Рис. 9

Проектировочный расчет сечения крыла

В проектировочном расчете необходимо подобрать силовые элементы поперечного сечения крыла: лонжероны, стрингеры и обшивку. Подберем материалы для продольных элементов сечения крыла и занесем их механические характеристики в таблицу 4.

Таблица 4

Шаг стрингеров находят из условия получения волнистости поверхности крыла не выше определенного значения. Величина должна удовлетворять неравенству

.

Здесь и - давление в горизонтальном полете на нижней и верхней поверхностях крыла;

- коэффициент Пуансона, для дюраля ;

- модуль упругости первого рода материала обшивки.

Приближенно величины и считаем равными

,

.

Параметр является относительным прогибом, рекомендуемое значение которого не более .

Задаваясь шагом стрингеров, найдём толщину обшивки, удовлетворяя неравенство (табл. 5).

Таблица 5.

По соображениям прочности увеличим толщину обшивки, приняв

дсж = 5(мм), др = 4(мм),

Определим количество стрингеров на верхней и на нижней частях поперечного сечения: . (рис. 10)

Рис. 10

Нагрузки, воспринимаемые панелями будут равны

где

Нагрузка, воспринимаемая панелью может быть представлена

Подбор продольного силового набора в растянутой зоне

Усилие в растянутой зоне определяется равенством

,

где - количество стрингеров в растянутой зоне, учитываемое в проектировочном расчете,

- площадь поперечного сечения одного стрингера,

- толщина обшивки в растянутой зоне.

Так как панель цельнофрезерованная:

- коэффициент, учитывающий концентрацию напряжений и ослабление сечения отверстиями под заклепки или болты,

- коэффициент, учитывающий запаздывание включения в силовую схему обшивки по сравнению со стрингерами, .

Тогда найдем потребную площадь стрингеров в растянутой панели: рис. 11

Зная потребную площадь стрингера, из сортамента профилей [1, приложение 4] выберем стрингер с близкой площадью поперечного сечения. Выбираем угольник равностенный ПР100-22, , , (рис 11).

Определим площади поясов лонжерона

Площадь следует распределить между растянутыми полками переднего и заднего лонжеронов.

, ,

Отсюда

и

Подбор продольного силового набора в сжатой зоне

Усилие в сжатой зоне находят по формуле:

,

где - количество стрингеров в сжатой зоне, учитываемое в проектировочном расчете

- расчетное разрушающее напряжение стрингера в сжатой зоне

- площадь поперечного сечения одного стрингера в сжатой зоне,

Присоединенную площадь обшивки определим по формуле:

.

Тогда потребная площадь стрингера:

.

Зная потребную площадь стрингера, из сортамента профилей [1, приложение 4] выберем стрингер с близкой площадью поперечного сечения (Рис. 12). Это бульбоугольник ПР102-23

, ,

Критические напряжения местной потери устойчивости выбранного стрингера определим по формуле:

,

- коэффициент, учитывающий условия закрепления граней стенки.

Стрингеры на местную устойчивость проверим для всех стенок стрингера, кроме приклепываемых к обшивке.

для полки стрингера:

.

Так как >, их необходимо скорректировать по формулам:

, , ,

.

Ширину присоединенной обшивки, работающей с напряжениями стрингера, определим:

.

Площадь присоединенной обшивки:

.

Суммарная площадь полок лонжеронов:

Распределим площадь между сжатыми полками переднего и заднего лонжеронов пропорционально квадратам их высот:

,

Примем отношение ширины полки лонжерона к ее толщине , тогда

1лонжерон:

, ; , ;

2лонжерон:

, ; , .

Подбор толщин стенок лонжеронов

Для приближенного расчета можно считать, что центр жесткости поперечного сечения лежит в центре тяжести жесткостей лонжеронов на изгиб.

Определим моменты инерции лонжеронов.

,

,

Перенося поперечную силу со статическим нулем в центр жесткости, замечаем, что эта сила эквивалентна двум силам:

,

и крутящему моменту

Эти силы вызывают потоки касательных усилий в стенках лонжеронов (рис. 13) .

Рис. 13

Если предположить, что крутящий момент воспринимается только внешним контуром сечения крыла, то этот момент уравновешивается потоком касательных усилий

Тогда в зависимости от расположения поперечной силы (до или после центра жесткости)

Найдем толщину стенки:

Примем

Тогда

, ,

. .

Определение расстояния между нервюрами

Расстояние между нервюрами определяется из условия равнопрочности при местной потере устойчивости стрингера и при общей потере устойчивости стрингера с присоединенной обшивкой.

Критические напряжения потери устойчивости стрингера определяются по формуле:

,

где - момент инерции сечения стрингера с присоединенной обшивкой относительно оси, проходящей через центр тяжести этого сечения и параллельной плоскости обшивки;

- расстояние между нервюрами.

Тогда

.

Проверочный расчет крыла

Целью проверочного расчета является проверка прочности конструкции при действительной геометрии и физико-механических характеристиках материалов конструкции методом редукционных коэффициентов.

Для определения коэффициента редукции нулевого приближения построим диаграмму деформирования материалов обшивки, стрингеров и лонжеронов. Параметры деформирования приведены в таблице 4.

Имея диаграмму деформирования, выбираем фиктивный физический закон. При расчетных нагрузках напряжения в наиболее прочном элементе конструкции - лонжероне - близки к временному сопротивлению. Поэтому фиктивный физический закон целесообразно проводить через точку (рис. 14).

Рис. 14

Определяем коэффициент редукции нулевого приближения в сжатой зоне:

Лонжерон: ,

Стрингер: .

Определяем коэффициент редукции нулевого приближения в растянутой зоне:

Лонжерон: ,

Стрингер: .

Определим редуцированные площади элементов. Действительные площади элементов сечения:

,

,

;

,

,

.

Редуцированные площади:

,

,

;

,

,

.

Дальнейшие расчеты представлены в таблице 6.

Далее необходимо найти координаты центра тяжести редуцированного сечения. Определяем положение центральных осей редуцированного сечения. Исходные оси выбираем проходящими через носок профиля в соответствии с его геометрией (рис. 15).

Координаты центра тяжести редуцированного сечения определяем следующим образом:

Рис. 15

,

,

где - число сосредоточенных площадей в сечении.

Координаты сосредоточенных элементов в центральных осях найдем так:

,

. (табл. 6)

Определяем осевые и центробежные моменты инерции редуцированного сечения в центральных осях:

Рис. 16

,

.

Далее необходимо найти угол поворота центральных осей до положения главных (рис. 16). Рис. 16

Вычислим координаты элементов в главных центральных осях

,

. (табл 6)

Определяем моменты инерции в главных центральных осях

,

.

Определяем проекции изгибающих моментов на главные центральные оси (рис. 17):

;

.

Определяем редуцированные напряжения в элементах сечения:

Определяем действительные напряжения в продольных элементах из условия равенства деформации действительных и редуцированных сечений по диаграмме деформирования (рис. 18).

Рис. 18

После нахождения действительных напряжений определяем коэффициент редукции последующего приближения для каждого элемента конструкции:

Определение коэффициентов редукции последующих приближений для каждого элемента конструкции будет проведено с помощью ЭВМ. (приложение 1)

После достижения сходимости коэффициентов редукции необходимо определить коэффициенты избытка прочности в элементах:

- в растянутой зоне,

- в сжатой зоне

Таблица 5

Таблица 5 (продолжение)

Проверочный расчет на касательные напряжения

Оценим прочность обшивки модифицированного сечения. Обшивка находится в плоском напряженном состоянии. В ней действуют касательные напряжения, значения которых получены на основе расчета на ЭВМ:

,

и нормальные напряжения , которые равны .(табл. 7)

Определим критическое напряжение потери устойчивости обшивки:

,

где ,

- расстояние между нервюрами, - шаг стрингеров.

Если обшивка теряет устойчивость от сдвига () и работает как диагонально - растянутое поле (рис. 19), то в ней возникают дополнительные растягивающие нормальные напряжения, определяемые по формуле:

,

,

где - угол наклона диагональных волн.

Рис. 19

Таким образом, напряженное состояние в точках обшивки расположенных вблизи стрингеров, определяем по формулам:

При При

, ,

,

. .

Условие прочности, соответствующее критерию энергии формообразования, имеет вид:

,

где

.

Коэффициент , характеризующий избыток прочности обшивки определяем по формуле:

.

Полученные результаты заносим в таблицу 7.

Строим эпюру касательных напряжений (рис. 20)

Рис. 20

Таблица 7

Расчет центра жесткости сечения крыла

Центр жесткости - это точка, относительно которой происходит закручивание контура поперечного сечения, либо это точка, при приложении поперечной силы в которой закручивание контура не происходит. В соответствии с этими двумя определениями существуют 2 метода расчета положения центра жесткости: метод фиктивной силы метод фиктивного момента. Так как проверочный расчет на касательные напряжения проведен, и эпюра суммарных ПКУ построена, то для расчета центра жесткости сечения используем метод фиктивного момента.

Определяем относительный угол закручивания 1го контура. Эпюра q - известна.

В соответствии с формулой Мора к первому контуру прикладываем единичный момент:

Тогда:

Так как обшивка самостоятельно не работает на нормальные напряжения, эпюра меняется скачком на каждом продольном элементе, оставаясь постоянной между элементами, то от интеграла перейдем к сумме

Определяем относительный угол закручивания сечения крыла при приложении к нему момента М = 1 ко всему контуру. Неизвестными являются q01 q02, для их определения запишем два уравнения: уравнение равновесия относительно т.А (нижний пояс переднего лонжерона) и уравнение равенства относительных углов закручивания первого и второго контуров (аналог ур-я совместности деформации).

где - удвоенные площади контуров.

Для расчета относительных углов воспользуемся формулой Мора. Прикладывая к каждому контуру единичный момент

Таким образом, уравнения для расчета неизвестных и примут вид

Решая которые, находим

После нахождения М1 иМ2, определяем относительный угол закручивания первого контура, от приложения к сечению единичного момента:

Определяем величину крутящего момента в сечении крыла от действующих нагрузок. Поскольку деформирование линейно, угол закручивания прямо пропорционален величине Мкр, тогда:

кНм.

Определяем расстояние от поперечной силы до центра жесткости (рис. 21).

м.

Рис. 21

Заключение о прочности крыла

Исследуя коэффициенты избытка прочности, можно прийти к выводу, что конструкция прочна по всем продольным элементам в сжатой и растянутой зонах и в обшивке, так как величина >1, причем запас прочности составляет:

- для стрингерного набора 10 - 15%,

- для обшивки 3 - 10%.

На некоторых участках обшивка немного перегружена.

Пояса лонжеронов значительно недогружены.

Проектировочный расчет стоек шасси

Исходные данные

Взлетная масса самолета mвзл=130000 кг;

Посадочная масса самолета mпос= 80000 кг;

Количество основных стоек ;

Количество колес на основной стойке ;

Количество амортизаторов на стойке ;

Геометрические параметры: .

Подбор колес

Подбор колёс начинаем с выбора типа пневматика. Тип выбираем с учётом условий эксплуатации и значений посадочной и взлетноё скоростей. Так как самолёт эксплуатируется на грунтовых ВПП, то используют пневматики низкого давления.

Далее определяем величину стояночной нагрузки для взлетной и посадочной массы самолёта:

кН;

кН.

По полученным данным из сортамента авиационных колес [2] выбираем колесо КТ-88 с характеристиками:

кН кН

кН - предельная радиальная нагрузка на колесо;

кН - максимально допустимая нагрузка на колесо;

мм - обжатие пневматика при максимально допустимой нагрузке;

кДж - работа, поглощаемая пневматиком при его обжатии на величину дмд;

кПа - рабочее давление в пневматике.

Так как , то пересчитаем характеристики колеса по формулам:

кПа

кН

мм

При этом удовлетворяются условия:

Коэффициент грузоподъемности колеса

Для коэффициента перегрузки принимаем значение

;

.

Тогда получим эксплуатационные нагрузки на колесо

кН;

кН.

Так как стойка содержит спаренные колёса, то более нагруженное колесо воспринимает усилие

кН <

Определение параметров амортизатора

Эксплуатационная работа, поглощаемая амортизационной системой при посадке:

,

где - эксплуатационная вертикальная посадочная скорость, равная

м/с.

Но так как , то принимаем м/с.

Тогда

кДж.

Одна стойка воспринимает эксплуатационную работу

кДж.

Вычислив эксплуатационную работу, поглощенную пневматиками при посадке

кДж,

найдем работу воспринимаемую амортизатором

кДж.

Ход амортизатора вычисляем по формуле

м;

- коэффициент полноты диаграммы обжатия амортизатора при восприятии работы .

цэ - передаточное число при ходе поршня Sэ .

Так как рассматривается телескопическая стойка и при этом предполагается, что в момент касания колесами земли ось стойки перпендикулярна поверхности земли, то зе =0,7 и цэ =1.

Для определения поперечных размеров амортизатора находим из равенства

площадь, по которой газ воздействует на шток амортизатора.

Зададимся значениями параметров:

МПа - начальное давление газа в амортизаторе;

- коэффициент предварительной затяжки амортизатора;

- передаточное число в момент начала обжатия амортизатора;

Тогда

м2.

Для амортизатора с уплотнением, закрепленным на цилиндре, внешний диаметр штока равен величине:

м.

Толщину уплотнительных колец полагаем

Тогда для внутреннего диаметра цилиндра

м.

Начальный объем V0 газовой камеры находим по формуле

Высота газовой камеры при необжатом амортизаторе

м.

Параметры и находим по следующему алгоритму.

Для нахождения неизвестных и используем уравнения

1

2

3

После некоторых преобразований

4

Здесь - передаточное число соответствующее ходу амортизатора

- коэффициент полноты диаграммы обжатия амортизатора при поглощении работы . Для телескопических стоек .

Первое из равенств (3) имеет вид квадратного уравнения

, 5

где , 6

7

из равенства (5)

8

Подставляя из (8) во второе уравнение (3) получаем трансцендентное уравнение

,

корень которого есть искомая величина .

Вычисления сведены в табл. 8

Таблица 8.

Строим график в координатной системе ( Smax, f ) (рис. 22)

Рис. 22

Точка пересечения кривой с осью f = 0 дает значение Smax =0,55.

Из зависимости (8) найдём

.

Давление газа в амортизаторе при его максимальном обжатии

МПа.

Высота уровня жидкости над верхней буксой

м.

При этом:

0,589 + 0,1045 = 0,6935 > 0,55 - условие выполняеться.

Задаваясь значениями параметров:

м - конструктивный ход амортизатора;

м - суммарная высота букс;

м - опорная база штока;

м - суммарный размер узлов крепления амортизатора;

получаем длину амортизатора в необжатом состоянии

м.

Длина амортизатора при эксплуатационном обжатии

м.

Определение нагрузок на стойку

Коэффициент расчетной перегрузки:

Расчетная вертикальная и горизонтальная нагрузки на стойку равны:

кН;

кН.

Между колесами усилие распределяется в соотношении 316,87: 210,36, а усилие

- 79,22 : 52,81.

Построение эпюр изгибающих моментов

Стойка является комбинированной системой. Вначале методом сечений находим усилие в подкосе. Записываем для стойки уравнение равновесия относительно шарнира

кН

Эпюра изгибающих моментов, действующих в плоскости движения самолёта, изображена на рисунке 23.

Рис.23

Максимальный момент, равный 489,57кНм, действует в точке навески шасси.

Эпюра изгибающих моментов, действующих в плоскости перпендикулярной плоскости движения самолёта, изображена на рисунке 24.

Рис. 24

Скачек на эпюре в точке присоединения стержня к цилиндру, созданный эксцентриситетно приложенной силой (вертикальной проекцией усилия в стержне), равен

кНм.

Крутящий момент равен величине

кНм

и нагружает только цилиндр.

Подбор параметров поперечного сечения элементов

В проектировочном расчете для телескопической стойки подбирают толщины стенок цилиндра и штока. Вначале для каждого из указанных элементов выбираем сечение, в котором изгибающий момент

Имеет максимальное значение. Осевые усилия и крутящий момент в проектировочном расчете не учитываем. Из условия прочности

,

где k - коэффициент пластичности, принимаем ;

W - момент сопротивления , ;

МПа.

Из этого уравнения находим

Зная наружный диаметр штока получим внутренний

м

Тогда толщина стенки

.

Аналогично находим значение для цилиндра, но так как наружный диаметр цилиндра неизвестен, то в нулевом приближении принимаем его равным м. Тогда получим

м.

мм.

Построение эпюры осевой силы

Расчетное давление газа в амортизаторе

МПа.

Газ давит на шток с силой

кН.

Несоответствие между силой Рш и внешней нагрузкой 528,127 кН объясняется наличием сил трения в буксах. Таким образом, сила трения в одной буксе равна величине

кН.

На верхнем конце штока газ давит на шток с силой

кН.

Следовательно, между сечениями, проходящими через верхнюю и нижнюю буксы, шток сжимается силой

кН;

ниже сечения нижней буксы - силой

кН.

На цилиндр газ воздействует через уплотнение с осевой силой

кН,

растягивающей цилиндр. При построении эпюры Nц, следует учесть также силы Fтр и Sz. Окончательный вид эпюр осевых сил Nц и Nш показан на рис. 25

Рис. 25

Проверочный расчет штока

Вычисляем напряжение в расчетном сечении по формулам

Вначале находим вспомогательные величины:

F - площадь сечения штока;

W - момент сопротивления штока;

кпл - коэффициент пластичности штока.

Для напряжений получим

- нормальные напряжения, направленные вдоль оси z;

- тангенциальные напряжения разрыва цилиндрических элементов от воздействия внутреннего давления;

- радиальные напряжения в цилиндрических элементах;

- касательные напряжения;

Для более опасного варианта ( = - 1296 МПа) имеем эквивалентные напряжения

Коэффициент избытка прочности:

.

Найдем для штока критические напряжения потери устойчивости и предельный изгибающий момент. Из формулы Эйлера

,

R - радиус срединной поверхности цилиндрического элемента;

- толщина цилиндрического элемента.

Так как , то:

- критическое напряжение по формуле Тетмайера.

Так как максимальное сжимающее напряжение уz = 1296 МПа не превышает укр, то шток не теряет устойчивость.

При находим

Мпред - предельный изгибающий момент в рассматриваемом сечении.

Коэффициент избытка прочности

Проверочный расчет цилиндра

Запишем для цилиндра

F - площадь сечения цилиндра;

W - момент сопротивления цилиндра;

- коэффициент пластичности цилиндра.

Для напряжений получим

- нормальные напряжения направленные вдоль оси z;

- тангенциальные напряжения разрыва цилиндрических элементов от воздействия внутреннего давления ;

- радиальные напряжения в цилиндрических элементах;

- касательные напряжения;

Для более опасного варианта имеем эквивалентные напряжения

Коэффициент избытка прочности:

Найдем для цилиндра критические напряжения потери устойчивости и предельный изгибающий момент. Из формулы Эйлера

R - радиус срединной поверхности цилиндрического элемента;

- толщина цилиндрического элемента.

- критическое напряжение по формуле Тетмайера.

Так как максимальное сжимающее напряжение уz = 1139 МПа не превышает укр, то цилиндр не теряет устойчивость.

При находим

Мпред - предельный изгибающий момент в рассматриваемом сечении.

Коэффициент избытка прочности

Заключение о прочности шасси

Цилиндр и шток прочны в пределах точности принятой расчетной схемы, если толщины их стенок имеют значения

мм, мм.

Может оказаться, что толщина стенки цилиндра зависит от его локальной прочности в месте приложения к цилиндру сосредоточенной силы от подкоса.

Однако для решения этой задачи следует ввести более точную расчетную схему.

Расчет оси колеса на ресурс

Расчетный изгибающий момент

кНм.

Диаметр оси подбираем из условия

,

которое принимает вид

м.

Изгибающий момент при единичной перегрузке

кНм.

Для максимальных напряжений в оси

МПа

Величина предела выносливости гладкого полированного образца из легированной стали

МПа.

Принимая коэффициент , учитывающий качество обработки поверхности детали равным , получаем предел выносливости

МПа.

С помощью МКЭ (приложение 2) находим коэффициент концентрации напряжений

.

Находим предел выносливости детали

МПа.

Тогда величина

Считая параметры уравнения кривой усталости равными , , определяем

.

Определив значения функций из графиков, [ 1 ] стр. 62,

находим правую часть корректированной линейной гипотезы суммирования усталостных повреждений

.

Долговечность оси колеса , характеризуемую числом взлётов-посадок вычисляем по формуле

Значение функции в соответствии с графиком равно

.

Принимая коэффицент запаса по ресурсу , найдем минимальный гарантийный ресурс оси колеса

посадок.

Приложение 1

148 РЕДУЦИР. ТОЛЩИНЫ

OБЩИE ДAHHЫE M XI YI FI .0040

7200E+11 29 .0000 .0000 .1000E-14 .0060

-.5500E+09 4 1.0290 .4970 .1387E-01 .0060

-.3440E+09 3 1.2540 .5210 .2780E-02 .0060

1201E+08 4 1.5570 .5390 .2780E-02 .0060

1290E+07 2 1.8600 .5760 .2780E-02 .0060

0000E+00 29 2.1620 .5450 .2780E-02 .0060

1190E+07 15 2.4650 .5380 .2780E-02 .0060

-.3403E+05 16 2.7670 .5250 .2780E-02 .0060

2145E+01 3.0700 .5080 .2780E-02 .0060

3.3710 .4860 .2780E-02 .0060

3.6730 .4600 .2780E-02 .0060

3.9750 .4310 .2780E-02 .0060

4.2730 .3990 .2780E-02 .0060

4.5770 .3640 .2780E-02 .0032

4.8020 .3360 .8030E-02 .0072

4.8020 -.1660 .3770E-02 .0072

4.5760 -.1810 .2330E-02 .0072

4.2720 -.2000 .2330E-02 .0072

3.9730 -.2170 .2330E-02 .0072

3.6710 -.2320 .2330E-02 .0072

3.3670 -.2460 .2330E-02 .0072

3.0670 -.2590 .2330E-02 .0072

2.7650 -.2580 .2330E-02 .0072

2.4630 -.2680 .2330E-02 .0072

2.1610 -.2740 .2330E-02 .0072

1.8590 -.2760 .2330E-02 .0072

1.1560 -.2730 .2330E-02 .0072

1.2550 -.2650 .2330E-02 .0052

1.0290 -.2500 .7690E-02 .0080

MX= .11948E+08 MY= .17681E+07 NZ= .00000E+00 IX= .15907E-02

IY= .10304E+00 FS= .39432E-01 Итераций- 19

ПОТОКИ КАСАТЕЛЬНЫХ

HАПРЯЖEHИЯ ГЛАВНЫЕ ЦЕНTPAЛЬНЫЕ РЕДУKЦИOНHЫE УCИЛИЙ

ДEЙСTBИTEЛЬHЫE Х y КOЭФФИЦИЕНТЫ -.4989E+05

.3665E+09 -.2683E+01 -.4955E+00 .1007 -.3133E+06

-.3473E+09 -.1674E+01 .4213E-01 1.0060 -.2319E+06

-.3023E+09 -.1450E+01 .7508E-01 .5168 -.1480E+06

-.3069E+09 -.1148E+01 .1051E+00 .3820 -.6102E+05

-.3144E+09 -.8470E+00 .1542E+00 .2704 .2529E+05

-.3113E+09 -.5440E+00 .1353E+00 .3062 .1122E+06

-.3120E+09 -.2410E+00 .1403E+00 .2973 .1993E+06

-.3118E+09 .6128E-01 .1394E+00 .3006 .2866E+06

-.3109E+09 .3647E+00 .1345E+00 .3123 .3738E+06

-.3092E+09 .6664E+00 .1245E+00 .3376 .4609E+06

-.3070E+09 .9692E+00 .1105E+00 .3803 .5480E+06

-.3042E+09 .1272E+01 .9361E-01 .4500 .6354E+06

-.3010E+09 .1571E+01 .7351E-01 .5771 .7213E+06

-.2873E+09 .1876E+01 .5066E-01 .8280 .9070E+06

-.2029E+09 .2102E+01 .3165E-01 1.0060 .7280E+06

4757E+09 .2122E+01 -.4700E+00 .1347 .6424E+06

3679E+09 .1897E+01 -.4939E+00 .0992 .5556E+06

3727E+09 .1594E+01 -.5250E+00 .0947 .4677E+06

3771E+09 .1296E+01 -.5540E+00 .0910 .3786E+06

3813E+09 .9947E+00 -.5810E+00 .0878 .2886E+06

3853E+09 .6915E+00 -.6071E+00 .0850 .1976E+06

3891E+09 .3923E+00 -.6320E+00 .0826 .1061E+06

3908E+09 .9050E-01 -.6431E+00 .0816 .1376E+05

3941E+09 -.2109E+00 -.6651E+00 .0796 -.7929E+05

3968E+09 -.5124E+00 -.6831E+00 .0781 -.1729E+06

3989E+09 -.8141E+00 -.6972E+00 .0770 -.2675E+06

4026E+09 -.1517E+01 -.7222E+00 .0752 -.3617E+06

4007E+09 -.1418E+01 -.7103E+00 .0761 -.4989E+05

5140E+09 -.1644E+01 -.7043E+00 .0986 .7110E+06

Равнодействующие нормальных напряжений:

MX= .11844E+08 MY= .18281E+07 NZ=-.73329E+05

Приложение 2

Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты