Разработка технологического процесса восстановления оси коромысел двигателя Д37

Разработка технологического процесса восстановления оси коромысел двигателя Д37

Вятская государственная сельскохозяйственная академия

Инженерный факультет

Кафедра ремонта машин

Разработка технологического процесса восстановления оси коромысел двигателя Д37

Курсовая работа

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ВГСХА 062.00.00.00ПЗ

Выполнил Селезенев А. Н.

Группа ИАу - 521

Проверил Бажин А. А.

Киров 2006

  • Содержание
    • Введение
    • 1. Служебное назначение, техническая характеристика детали
    • 2. Выбор способов устранения дефектов детали
    • 3. Программа выпуска ремонтируемых изделий
    • 4. Маршрутный технологический процесс ремонта детали
    • 5. Технологические операции ремонта детали
    • 6. Выбор технологических баз
    • 7. Расчет режимов обработки
    • 7.1 Расчёт величины припуска покрытий под механическую обработку
    • 7.2 Предварительное шлифование "на верность"
    • 7.3 Нанесение гальванопокрытия
    • 7.4 Шлифование поверхности (окончательная обработка)
    • 8. Технологическая документация
    • Заключение
    • Список литературы
    • Приложение
    • Введение
    • В процессе эксплуатации автомобиля его надежность и другие свойства постепенно снижаются вследствие изнашивания деталей, а также коррозии и усталости материала, из которого они изготовлены. В автомобиле появляются различные неисправности, которые устраняют при ТО и ремонте.
    • В какой бы совершенной конструкции машина не выступала в процессе производства, при её употреблении на практике обнаруживаются недостатки, которые приходится исправлять дополнительным трудом. С другой стороны, чем больше она вышла за предел своего возраста, чем больше сказывается действие нормального изнашивания, чем больше изношен и старчески ослаб материал, из которого она сделана, тем многочисленнее и значительнее становятся ремонтные работы, необходимые для того, чтобы поддержать существование машины до конца периода средней продолжительности ее жизни и в высшей степени важно немедленно исправлять всякое повреждение машин. В виду этого значит, что с технической точки зрения ремонт машин- это объективная необходимость. Только благодаря ремонту возможно поддерживать существование машины до истечения средней продолжительности её жизни.
    • Такое положение в полной мере относится и к современным автомобилям. Необходимость и целесообразность ремонта автомобилей обусловлены прежде всего неравномерностью их деталей и агрегатов. Известно, что создать равнопрочную машину, все детали которой изнашивались бы равномерно и имели бы одинаковый срок службы невозможно. Следовательно, ремонт автомобиля даже только путем замены некоторых его деталей и агрегатов, имеющих небольшой ресурс, всегда целесообразен и с экономической точки зрения оправдан. Поэтому в процессе эксплуатации автомобили проходят на автотранспортных предприятиях (АТП) периодическое ТО и при необходимости текущий ремонт (ТР), который осуществляется путем замены отдельных деталей и агрегатов, отказавших в работе. Это позволяет поддерживать автомобиль в технически исправном состоянии.
    • При длительной эксплуатации автомобили достигают такого состояния, когда затраты средств и труда, связанные с поддержанием их в работоспособном состоянии в условиях АТП, становятся больше прибыли, которую они приносят в эксплуатации. Такое техническое состояние автомобилей считается предельным, и они направляются в капитальный ремонт (КР). Задача КР состоит в том, чтобы с оптимальными затратами восстановить утраченные автомобилем работоспособность и ресурс до уровня, нового или близкого к нему.
    • Ремонт автомобилей имеет большое экономическое значение. Основными источниками экономической эффективности ремонта автомобилей является использование остаточного ресурса их деталей. Около 70…75% деталей автомобилей, прошедших срок службы до первого КР, имеют остаточный ресурс и могут быть использованы повторно либо без ремонта, либо после небольшого ремонтного воздействия.
1. Служебное назначение, техническая характеристика детали

Ось коромысел входит в состав деталей газораспределительного механизма, определяющая вместе с другими составляющими ресурс данного механизма. Эту же деталь в отдельных источниках называют валиком коромысел. Масса детали 0,124 кг, материал Ст. 40Х, твёрдость HRC 53…61. В процессе работы двигателя на неё действуют нагрузки со стороны коромысел клапанов.

Самые типичные, как правило, виды дефектов это: износ поверхности под втулки и стойки коромысел, а также ослабление посадки заглушек масляных каналов. Предельная степень износа сопряжений в газораспределительном механизме характеризуется экономическими критериями: допустимым падением мощности двигателя, ухудшение топливной экономичности и повышенным расходом масла на угар. Кроме того, износы приводят к уменьшению степени сжатия и коэффициента наполнения двигателя, что ухудшает пусковые качества дизеля и приводит к неполному сгоранию топлива (за счёт чего и падает мощность).

Данная ось коромысел имеет следующие дефекты:

Таблица 1.1 - Дефекты оси коромысел

Контролируемый

дефект

Способы и средства контроля

Размеры,мм

По чертежу

Допустимый в сопряжении с деталями:

бывшими в

эксплуатации

новыми

Износ поверхности под втулки коромысел

Скобы или микрометр

16-0,012

15,97

15,94

Износ поверхности под стойки

Скобы или микрометр

16-0,012

15,98

-

Ослабление посадки или выпадение заглушек

Молоток

-

Не допускается

Таблица 1.2 - Химический состав стали 40Х, % (ГОСТ 1050-88)

C

Si

Mn

Cr

Ni

Cu

S и P

Не более

0,36…0,44

0,17…0,37

0,50…0,80

0,80…1,10

0,30

0,30

0,035

Таблица 1.3 - Механические свойства стали 40Х

ут, МПа

ув, МПа

д5,%

ш,%

KCU, дж/см2

HB (не более)

не более

горячекатаной

отожжёной

780

980

10

45

59

-

-

2. Выбор способов устранения дефектов детали

При выборе рациональных способов устранения дефектов детали используем приложения к методическим указаниям для выполнения курсовой работы. Целесообразные способы восстановления устанавливают на основе конструктивно-технологических характеристик детали.

К ним относят вид основного материала детали, вид восстанавливаемой поверхности, материал покрытия, предельно (минимально) допустимый диаметр восстанавливаемой поверхности (наружный), минимально допустимый диаметр восстанавливаемой поверхности (внутренний), минимальная толщина (глубина) наращивания (упрочнения), максимальная толщина (глубина) наращивания (упрочнения), сопряжения или посадки восстанавливаемой поверхности, вид нагрузки на восстанавливаемую поверхность. С учетом номенклатуры деталей-представителей, рекомендуемых для восстановления тем или иным способом выбираем ряд альтернативных способов восстановления ремонтируемой детали.

Выбранные способы оцениваем по показателям физико-механических свойств деталей: коэффициент износостойкости, коэффициент выносливости, коэффициент сцепляемости, коэффициент долговечности, микротвердость. Окончательный выбор способов восстановления производим исходя из технико-экономических показателей каждого способа: удельный расход материала, удельная трудоемкость наращивания, удельная трудоемкость подготовительно-заключительной обработки, удельная суммарная трудоемкость, коэффициент производительности процесса, удельная стоимость восстановления, показатель технико-экономической оценки, удельная энергоемкость [1].

С учетом недостатков способов восстановления выбираем экономически целесообразные, обеспечивающие необходимый уровень качества.

Таблица 2.1 - Технико-экономические показатели альтернативных способов восстановления оси коромысел

Наименование параметров

Размерность

НРГ

НРАД

НВДПП

ГВПЖ

Удельная трудоёмкость

Чел.-ч./м2

37

29,4

30,6

14,8-16,8

Коэффициент производительности процесса

-

0,83-1,04

1,04-1,31

0,97-1,04

2,0-2,25

Удельная себестоимость

руб./м2

74,6-80,4

58,9-63,5

66,5-68

29,7-34,8

Показатель технико-экономической оценки

руб./м2

152-164

123-132

33,8-41

27,0-31,5

Удельная энергоёмкость

кВт*ч/м2

80

520

234

-

НРГ - ручная электродуговая наплавка;

НРАД - ручная аргонодуговая наплавка;

НВДПП - вибродуговая наплавка порошковой проволокой;

ГВПЖ - гальваническое покрытие железом.

Для восстановления изношенных поверхностей оси коромысел применяем способ гальванического покрытия железом (осталивание).

Осталиванием называется процесс получения твёрдых износостойких железных покрытий из горячих хлористых электролитов. Процесс осталивания был разработан проф. М. П. Мелковым и применяется в авторемонтном производстве главным образом в целях компенсации износа деталей. По сравнению с процессом хромирования он имеет следующие преимущества: высокий выход металла по току, достигающий 85-90% (в 5-6 раз выше, чем при хромировании); большую скорость нанесения покрытия, которая при ведении процесса в станционарном электролите достигает 0,3-0,5 мм/ч (в 10-15 раз выше, чем при хромировании); высокую износостойкость покрытия (не ниже чем у стали 45 закаленной); возможность получения покрытий с твёрдостью 2000-6500 МПа толщиной в 1-1,5 мм и более; применение простого и дешёвого электролита. Эти достоинства осталивания объясняют его широкое применение в практике ремонта автомобилей.

Удельные трудоёмкость и себестоимость минимальны в сравнении с другими способами, одновременно с этим коэффициент производительности процесса выгодно выше. Кроме того, обеспечивается достаточный уровень физико-механических свойств восстановленной поверхности.

3. Программа выпуска ремонтируемых изделий

Годовой объем выпуска дет
алей определяют по формуле:

nдет.=Nизд.•q•Кр, (3.1)

где nдет. - годовая программа восстанавливаемых деталей, шт.;

Nизд. - годовой объем выпуска агрегата (сборочной единицы), шт.;

q - количество деталей данного наименования в агрегате (сборочной

единице), шт.;

Кр - коэффициент ремонта детали, показывающий, какая часть деталей требует ремонта (Кр=0,8);

nдет.=2500*4*8=8000 шт.

Исходя из годовой программы выпуска агрегатов, определяют квартальное, месячное и суточное задания. Тип производства устанавливают ориентировочно, исходя из массы деталей и программы выпуска агрегата (сборочной единицы).

Общепринятой методики определения величины месячной производственной программы по восстановлению деталей пока не существует, но, пользуясь практикой работы авторемонтных заводов, можно рекомендовать соотношение:

nмес.= 0,083*nдет.; (3.2)

nмес.= 0,083*8000=664 шт.

Т.к. масса детали менее 1 кг, а годовой объем выпуска деталей 8000 шт., то тип производства - среднесерийное.

Тип производства определяет форму его организации, принципиальные решения при проектировании технологических процессов, используемые средства технологического оснащения и др.

4. Маршрутный технологический процесс ремонта детали

Технологический процесс ремонта детали разрабатывают исходя из необходимости устранения всех дефектов детали, либо их части, если деталь сложная, а число устраняемых дефектов велико.

В начале технологического процесса выполняем подготовительные операции: очистку, обезжиривание, правку и восстановление базовых поверхностей. Затем производим наращивание изношенных поверхностей. При этом, в первую очередь, выполняют операции связанные с нагревом детали до высокой температуры. При необходимости детали подвергают вторичной правке. После наращивания выполняем операции механической обработки ремонтируемой детали.

Контрольные операции выполняем в конце технологического процесса ремонта детали и после выполнения наиболее ответственных операций.

Выбор технологического оборудования во многом зависит от типа производства. Так как у нас среднесерийное производство, то применяем универсальные станки.

На практике применяют следующие варианты типового технологического процесса осталивания [2]:

Первый вариант состоит из операций:

1. Слесарная. Зачистка заусениц на деталях и монтаж защитных колпачков на резьбовые поверхности.

2. Обезжиривание. Детали обезжириваются в колокольной ванне с 5-10%-ным раствором серной кислоты и кварцевым песком (т=20 мин). Допускается проведение операции в смеси серной (2 части) и соляной (1 часть) кислот.

3. Моечная. Промывка деталей в холодной воде.

4. Монтажная. 1-й переход - изоляция мест, не подлежащих осталиванию. 2-й переход -монтаж деталей в подвески.

5. Обезжиривание. 1-й переход- обезжиривание поверхностей деталей венской известью или карбидным илом. 2-й переход -- промывка деталей с подвесками в холодной воде.

6. Анодная подготовка. Травление деталей по одной подвеске на аноде в 30% - ном растворе серной кислоты.

7. Моечная. 1-й переход - промывка подвески с деталями в холодной воде. 2-й переход - промывка подвески с деталями в горячей воде (55-75°С).

8. Осталивание. 1-й переход - выдержать подвеску с деталями в ванне без тока (10--15 сек). 2-й переход - разогнать ванну до рабочей плотности тока (3-5 мин).

3-й переход - рабочий режим.

9. Моечная. Промывка деталей с подвесками в холодной воде.

10. Слесарная. 1-й переход - демонтаж деталей с подвесок. 2-й переход - снятие защитной изоляции с поверхностей деталей.

11. Сушильная. Сушка деталей в сушильном шкафу (t = 120°С, т =10 мин.), допускается осушение деталей сухими опилками, или обдувка сжатым воздухом.

Второй вариант состоит из таких операций:

1. Моечная. Промывка деталей в моечной ванне.

2. Предварительная обработка. 1-й переход - правка центровых отверстий. 2-й переход - механическая обработка восстанавливаемых поверхностей "на верность" с целью получения исходной геометрии.

3. Слесарная. Зачистка заусенцев и восстанавливаемых поверхностей у деталей.

4. Монтажная. 1-й переход - изоляция мест, не подлежащих осталиванию. 2-й переход - монтаж деталей в подвески.

5. Обезжиривание. 1-й переход - обезжиривание поверхностей деталей венской известью или карбидным илом. 2-й переход - промывка деталей с подвесками в холодной воде.

6. Анодная подготовка. Травление деталей по одной подвеске на аноде в 30%-ном растворе серной кислоты.

7. Моечная. 1-й переход - промывка деталей по одной подвеске в холодной воде. 2-й переход - промывка деталей по одной подвеске в горячей воде.

8. Осталивание. 1-й переход - выдержать подвеску с деталями в ванне без тока (10--15 сек). 2-й переход - разогнать ванну до рабочей плотности тока (3--5 мин). 3-й переход - рабочий режим.

9. Моечная. Промывка деталей с подвесками в холодной воде.

10. Слесарная. 1-й переход - демонтаж деталей с подвесок. 2-й переход - снятие защитной изоляции с поверхностей деталей.

11. Сушильная. Сушка деталей в сушильном шкафу

(t=120°С, т=10 мин), допускается осушение деталей сухими опилками.

Третий вариант состоит из операций:

1. Моечная. 1-й переход - промывка деталей в моечной машине. 2-й переход выпаривание и очистка смазочных каналов и глубоких сверлений.

2. Дефектоскопия. Частичная или полная электромагнитная дефектоскопия деталей.

3. Предварительная обработка. Механическая обработка восстанавливаемых поверхностей "на верность" с целью получения исходной геометрии.

4. Слесарная. Зачистка заусенцев и восстанавливаемых поверхностей у деталей.

5. Монтажная 1-й переход-изоляция мест, не подлежащих осталиванию, глушение смазочных каналов. 2-й переход - монтаж токонесущих крючков.

6. Обезжиривание. 1-й переход-обезжиривание поверхностей деталей венской известью или карбидным илом. 2-й переход - промывка деталей в холодной воде.

7. Травление. Травление по одной детали или одной подвески с деталями в ванне осталивания. (Да=60-80 а/дм2, t =75°С, т = 2 мин).

8. Моечная. Промывка деталей в холодной воде.

9. Анодная подготовка. Травление деталей на аноде в 40%-ном растворе серной кислоты.

10. Моечная. 1-й переход - промывка деталей в холодной воде. 2-й переход промывка деталей в горячен воде.

11. Осталивание 1-й переход -выдержать деталь или подвеску с деталями в ванне без тока (10-15 сек). 2-й переход - разогнать ванну до рабочей плотности тока (3-5 мин.). 3-й переход - рабочий режим.

12. Моечная. Промывка деталей в холодной воде.

13. Слесарная 1-й переход -демонтаж деталей от токонесущих крючков. 2-й переход - снятие защитной изоляции с поверхностей детали.

14. Сушильная. Обдувка деталей сухим воздухом.

Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты