Социальные различия имущественной обеспеченности населения в российских регионах
p align="left">Наиболее важным показателем для нас является стандартное отклонение. Чем выше стандартное отклонение величины (чем больше ее изменчивость), тем больше эта переменная будет оказывать влияние на результаты кластеризации. Мы видим, например что переменные Sdohod или Szarplata имеют наибольшее стандартное отклонение и возможно разделение регионов на группы именно по этим признакам. Практически большее стандартное отклонение означает, что между регионами существует большая дифференциация по данным показателям: в какой-то части регионов показатели малы, а в какой-то части регионов наоборот велики. Таким образом, справедливо ожидать, что показатели с большей «дифференцирующей способностью» (большей дисперсией) окажут большее влияние на результат кластеризации [4, 5]

Видно, что, как и для многих экономических показателей, чем меньше среднее показателя, тем меньше стандартное отклонение этого показателя. Связано это с невозможностью переменных принимать отрицательные значения. Это значит, что наибольшее влияние на результаты кластеризации окажут переменные с большей средней величиной.

Так же большое подспорье в оценке перспектив кластеризации окажут гистограммы абсолютных или стандартизированных значений по тем переменным по которым она проводиться. Далее мы будем рассматривать только стандартизированные значения, в связи с тем, что стандартные отклонения слишком различны. Стандартизация показателей проводилась с помощью меню SPSS Analyze - Descriptive Statistics - Descriptives с установкой флажка стандартизации. Изучим гистограммы наших показателей.

При анализе гистограммы Коэффициента Джини мы видим, что все регионы отчетливо делятся на две группы. Причем одна из этих групп крайне велика и туда входит большая часть всех регионов РФ.

Анализ гистограмм для коэффициента фондов, численности населения с доходами, ниже ПМ и соотношения денежных доходов с ПМ выявил аналогичные распределение регионов как и для коэффициента Джини.

А вот анализ гистограмм Szarplata и Spensii не выявил очевидного деления на какие-либо группы регионов.

Стоит также рассмотреть и корреляции всех показателей.

Таблица 4 «Матрица корреляций показателей»

Gini

Fond

Sdohod

Szarplata

Spensii

ChislMin

Gini

1

,953(**)

,872(**)

,455(**)

-,225

-,384(**)

Fond

,953(**)

1

,881(**)

,370(**)

-,257(*)

-,301(*)

Sdohod

,872(**)

,881(**)

1

,599(**)

-,046

-,658(**)

Szarplata

,455(**)

,370(**)

,599(**)

1

-,069

-,668(**)

Spensii

-,225

-,257(*)

-,046

-,069

1

-,250(*)

ChislMin

-,384(**)

-,301(*)

-,658(**)

-,668(**)

-,250(*)

1

Как следует из справочной информации по пакету SPSS, звёздочками отмечены значимые корреляции, то есть, те, на которые имеет смысл обращать внимание. Исследовав таблицу корреляций мы можем заметить, что Коэффициент фондов и Коэффициент Джини дают нам крайне близкую информацию (корреляция 0,953) что в свою очередь позволяет нам вместо обоих показателей воспользоваться одним. В данной ситуации более предпочтительным для работы является коэффициент фондов так как он в свою очередь обладает большим относительным разбросом. Об этом нам может сказать коэффициент вариации (отношение стандартного отклонения переменной к среднему значению этой переменной). У коэффициента Джини он составляет порядка 0,1 а у коэффициентов фондов около 0,389 (в таблицах не показано).

Иерархическая кластеризация. После изучения полученного результата описательной статистики показателей социально-экономического положения было установлено, что ряд переменных не стоят нашего внимания, а именно - коэффициент Джини.

Было решено провести серию пробных разбиений наблюдений на 2, 3 и так далее кластеров, чтобы установить переменные либо данные, которые играют малозаметную роль в разбиении регионов на кластеры. При этом воспользуемся методом k-средних.

При первом же разбиении на 2 кластера, мы можем судить о том, что город Москва явно превзошел все остальные регионы по уровню социально-экономического развития. И при любом количестве кластеров Москва всегда будет отделяться в отдельный кластер. Поэтому целесообразнее всего будет исключить Москву из рассмотрения в работе, ибо дальнейшее ее рассмотрение не поможет нам объективно взглянуть на общую социально-экономическую обстановку в целом по России. То есть далее мы будем рассматривать только 69 регионов.

Кластерный анализ с разбиением на 3 кластера создал у нас две достаточно большие группы: 24 и 38 регионов и одну маленькую (7 регионов). В самую малочисленную группу попали самые худшие по показателям регионы с достаточно малыми доходами, зарплатами и большой прослойкой населения, доходы которых явно меньше прожиточного минимума. Такие регионы как Ингушетия, Калмыкия, республика Тыва. В основном это регионы с крайне низким уровнем жизни и не развитой экономикой.

Две другие группы оказались более подкованными в этом плане. Во вторую группу попали такие регионы как Тамбовская, Тульская области республика Саха. Лучший результат же показали регионы первого кластера. Самые доходные и социально обеспеченные. Такие как Московская область, Мурманская и Вологодская области.

Далее приводится дендрограмма (график объединения) для иерархического кластерного анализа с оставшимися переменными. Из нее будет видно на каких расстояниях объекты объединяются в кластеры, из этого можно будет сделать вывод на сколько кластеров разбить всю совокупность.

Красной линией на дендрограмме мы отметили один из вариантов кластерного решения, который предусматривает разбиение на 6 кластеров. Это решение даёт следующие центры кластеров:

Таблица 6 «Кластерные центры по итогам иерархического анализа»

Кластер

1

2

3

4

5

6

zFond

,18

-,32

-,15

-,03

1,06

-,70

zSdohod

,58

-,25

-,89

,01

1,37

-1,73

zSzarplata

1,18

-,35

-1,23

,68

1,14

-1,29

zSpensii.

,86

,36

-,53

-1,83

-,55

-1,41

zChislMin

-,80

-,07

1,54

-,21

-,99

4,60

Кластеризация методом k-средних. Повторим разбиение на 6 групп с помощью метода k-средних. Таблица 7 показывает, как распределились в итоге регионы по кластерам. Последняя графа показывает расстояние от региона до центра его кластера, то есть, как бы говорит, далеко ли регион находится от типичного для данного кластера региона.

Таблица 7 «Принадлежность к кластерам»

Кластер

Регион

Расстояние

1

Белгородская область

,986

Московская область

1,071

Липецкая область

,968

Ярославская область

,404

Вологодская область

,633

Республика Башкортостан

,933

Ростовская область

1,217

Волгоградская область

1,092

Астраханская область

,862

Республика Татарстан

1,185

Челябинская область

,745

Кемеровская область

,841

Омская область

,834

Томская область

1,230

Магаданская область

1,251

2

Брянская область

,756

Владимирская область

1,281

Воронежская область

1,03

Калужская область

,837

Костромская область

,529

Орловская область

1,390

Рязанская область

,588

Смоленская область

,579

Тамбовская область

1,312

Тверская область

1,190

Тульская область

1,054

Республика Карелия

1,161

Ленинградская область

1,937

Калининградская область

1,439

Новгородская область

,633

Псковская область

1,124

Кабардино-Балкарская Республика

,793

Карачаево-Черкесская Республика

1,135

Республика Северная Осетия-Алания

1,696

Краснодарский край

1,478

Ставропольский край

1,052

Удмуртская Республика

,934

Чувашская Республика

,867

Кировская область

1,027

Нижегородская область

,672

Оренбургская область

,608

Пензенская область

,972

Саратовская область

,931

Республика Хакасия

1,135

Алтайский край

1,647

Новосибирская область

1,273

3

Ивановская область

1,734

Республика Калмыкия

1,684

Республика Адыгея

,908

Республика Дагестан

1,051

Республика Мордовия

1,155

Республика Марий Эл

1,317

Ульяновская область

,843

Курганская область

1,007

Республика Алтай

1,197

Республика Бурятия

2,107

Республика Тыва

1,163

4

Курская область

1,489

Мурманская область

1,090

Республика Саха

1,124

Приморский край

1,385

Хабаровский край

,563

Амурская область

,764

Сахалинская область

1,198

5

Санкт-Петербург

,794

Свердловская область

,897

Республика Коми

,873

Самарская область

1,381

6

Республика Ингушетия

,000

Чем меньше показатель расстояния у данного кластера тем он более ярко выраженный представитель этого кластера.

Таблица 8. «Количество регионов, попавших в каждый из кластеров»

кластер

1

15,000

2

31,000

3

11,000

4

7,000

5

4,000

6

1,000

верно

69,000

пропущено

,000

По результатам кластеризации мы получили один крупный кластер (2) , два средних кластера (1), (3), два маленьких кластера (4),(5) и один очень маленький полученный из одного региона РФ (6).

Для получения более ясного представления о кластерах, стоит упомянуть ярких представителей своих групп. В первый кластер попали такие регионы как: Московская область, Омская область, Ярославская область. Во второй попали регионы такие как: Костромская область, Нижегородская и Смоленская области. У третьего кластера яркими представителями оказались Ульяновская область и Адыгея. У четвертого кластера выделились Хабаровский край, Амурская область. А яркими представителями пятого кластера стали Санкт-Петербург, Свердловская область. А вот шестой кластер состоит лишь из одного региона России- Республики Ингушетии.

Для создания качественного представления о социально-экономическом положении (различиях в имущественном обеспечении и неравенстве в доходах) очень полезно будет рассмотреть таблицу окончательных кластерных центров.

Таблица 9 «Окончательные кластерные центры»

кластер

1

2

3

4

5

6

zFond

,15515

-,34257

-,21524

-,02923

1,06128

-,70377

zSdohod

,53023

-,26863

-,86786

,01469

1,37473

-1,72943

zSzarplata

1,01466

-,36758

-1,20269

,67806

1,14142

-1,28902

zSpensii

,72391

,40307

-,44828

-1,83259

-,54984

-1,40592

zChislMin

-,76469

-,05674

1,37576

-,21190

-,99077

4,59510

В данной таблице отображены окончательные кластерные центры. Координаты кластерного центра - это средние значения по каждой переменной кластеризации по всем регионам, входящим в этот кластер. Учитывая, что переменные стандартизированы, средние значения даны здесь в стандартизированном виде. То есть, 0 означает средний уровень по России, положительное значение - выше среднероссийского уровня, отрицательное - ниже. Таким образом, кластерные центры показывают, чем характеризуется каждый кластер, по каким переменным есть отличия. В данном случае они характеризуют материальное расслоение общества.

Первый кластер. Регионы попавшие в данный кластер это по большей части довольно стабильные и высокоразвитые в плане промышленности и социального обеспечения. Достаточно крепкие середняки если можно так сказать. Населения живущее ниже прожиточного минимума не много, небольшое расслоение общества соответствует неплохой социальной подкованности регионов. Уверенные показатели доходов, пенсий и заработной платы говорят о благополучии данных регионов.

Кластер №2 - самый многочисленный кластер. В него входит основная часть регионов России. Надо сказать достаточно посредственные, ничем особо не выделяющиеся, регионы с довольно сносными показателями. И хотя показатели по большей части не плохи смотрятся они явно хуже чем регионы первого кластера. Небольшое расслоение общества, показатели доходов и заработной платы находятся в отрицательном соотношении с прожиточным минимумом. Приятно удивляет показатель по пенсиям. В общем если данные регионы и можно отнести к середнякам то уж точно к их худшей части.

Третий кластер показал достаточно плохие показатели по численности населения живущего бедно, имеющие достаток явно ниже прожиточного минимума. Низкие доходы, пенсии и особенно зарплаты. Расслоение общества невелико. Связано это прежде всего с отсутствием серьезных возможностей для развития регионов.

Четвертый кластер показал абсолютно близкие к средним по стране показателям по расслоению общества и среднедушевым доходам. Зато заработная плата по большей части оказалась выше среднего, что приятно удивило. Но регионы не без изъянов, а именно уровень пенсий крайне низок. В свою очередь показатель населения живущего на доходы ниже прожиточного минимума не велико.

А вот у пятого кластера социальное расслоение достаточно большое. Очень хорошие, по отношению к другим регионам, показатели заработной платы и доходов говорят о хорошем экономическом развитии регионов. Плохо, по-прежнему, живут пенсионеры чьи пенсии оказались, в среднем, ниже чем в по остальной России. Основная часть населения живет хорошо, об этом говорит показатель численности населения живущего с доходами ниже чем прожиточный минимум. Вполне можно сказать что данные регионы в социально-экономическом плане одни из самых подкованных. Определенно лучшие и самые богатые регионы с большими возможностями и потенциалами.

Шестой кластер явно худший регион страны. Республика Ингушетия является беднейшим. Расслоение не велико. Но это, прежде всего, связано с плохим уровнем жизни абсолютно всего населения региона. Маленькие зарплаты, пенсии, доходы. Скорее всего очень плохо влияет географическое расположение. Близость к Чеченской республике, обилие беженцев. Отсутствие должного количества рабочих мест. Никакой толковой социальной обеспеченности. Привели к тому что регион ярко выразился в худшую сторону по отношению ко всем остальным рассматриваемым регионам.

Таблица 10

«Расстояние между окончательными кластерными центрами»

Кластер

1

2

3

4

5

6

1

3,014

1,627

3,529

2,584

2,607

2

3,014

1,774

1,804

2,578

4,928

3

1,627

1,774

2,990

2,850

3,470

4

3,529

1,804

2,990

2,120

5,665

5

2,584

2,578

2,850

2,120

4,737

6

2,607

4,928

3,470

5,665

4,737

В этой таблице показаны расстояния между кластерными центрами. На основании сопоставления данной таблицы со средними расстояниями в каждом из кластеров можно сделать вывод, насколько кластеры обособленны.

Таблица 11 «Значимость переменных при разбиении на 6 кластеров»

Sig.

zFond

,000

zSdohod

,000

zSzarplata

,000

zSpensii

,000

zChislMin

,000

Из таблицы дисперсионного анализа можно проанализировать результаты кластеризации, оценив значимость всех переменных. Значимость всех переменных получилась удовлетворительной по уровню 0.05, это говорит о том, что все переменные оказывают достаточно сильное влияние на результаты кластеризации.

Вероятнее всего, явных кластеров в пространстве наших переменных не существует. Учитывая, что многие из исходных переменных имели распределение, близкое к нормальному, скорее всего, рабочая модель распределения регионов в социально-экономическом пространстве выглядит как общероссийский центр с основной массой регионов с характеристиками, близкими к среднероссийскому уровню и небольшое количество «периферийных» регионов, чья структура в силу особенностей конкретного региона заметно отличается от среднероссийской.

Это значит, что можно предложить другие, равнозначные варианты группировки. Разделить на другое количество кластеров, использовать другие показатели или их комбинации и т.д.

Выводы

В результате проделанной работы удалось обобщить и проанализировать исходные данные по социально-экономическому положению регионов РФ по состоянию на конец 2004 года. Был выбран метод проведения исследования и построения статистической модели. На основе иерархического кластерного анализа были сделаны предварительные выводы о возможном разбиении на кластеры. Окончательная кластеризация проведена с помощью метода k-средних.

В полученной 6-кластерной модели обнаружены значительные различия в социальном и экономическом развитии регионов, попавших в разные кластеры. Особенности каждого кластера были рассмотрены, также были предложены возможные причины данных особенностей. Был получен один большой кластер, отражающий характерное в среднем положение регионов по России, а также 5 более мелких, менее характерных для России кластера.

В работе удалось обнаружить, что большинство регионов находится в положении близком к среднему по всей России, и лишь небольшая часть регионов сильно отличается от средних показателей. В основном это было заметно на бедных регионах Кавказа и богатых регионов центральной части РФ. Примером может послужить Москва постоянно отделявшаяся в обособленный кластер.

Тем не менее, полученная группировка регионов может быть использована в дальнейшем. Ее можно верифицировать на более поздних данных. Если изменений мало, значит полученная классификация хотя и являлась одной из многих возможных, но всё-таки не случайна.

В работе использовались данные Росстата за 2004 год, которые к настоящему моменту уже несколько устарели. На веб-сайте Госкомстата [3] уже имеются данные о начисленных пенсиях, зарплатах и прожиточном минимуме даже за 2006 год, однако не все исследованы показатели даны в разрезе по регионам (например, индекс Джини или коэффициент фондов даны только в целом по России). Но если запастись свежим статистическим сборником (имеется аналогичный сборник 2006 года), например, то можно построить аналогичную модель по новым данным и сравнить. Возможно, ситуация осталась такой же, возможно появились какие-то изменения, и тогда можно будет поставить вопрос о причине переходов регионов из одного кластера в другой, о смене типологий.

Список использованных источников

1. Социальное положение и уровень жизни населения России. 2005: Стат. сб. / Росстат. -М., 2005

2. Беляева, Л.А. Материальное неравенство в России. Реальность и тенденции // Социологические исследования, 2007, №11.

3. Федеральная служба государственной статистики, http//www.gks.ru

4. Бююль, А., Цёфель, П. SPSS: искусство обработки информации. Анализ статистических данных и восстановление скрытых закономерностей. - Диасофт, 2005

5. Решение задач в программе SPSS, http://www.spsstools.ru

6. SPSS 13.0. Справочная система.

7. Гайдышев, И. Анализ и обработка данных. Специальный справочник - С.-Пб., 2001

8. Кластерный анализ в задачах социально-экономического прогнозирования, http://www.ref.by/refs/49/28133/1.html

9. Интернет-университет информационных технологий. 13. Лекция: Методы кластерного анализа. Иерархические методы, http://www.intuit.ru/department/database/datamining/13/datamining_13.html

10. Кунец Н.Л. Кластерный анализ в портфельном инвестировании. Курсовая работа. http://www.5ballov.ru/referats/preview/71794/1

Приложение. Порядок выполнения анализа в SPSS

1. Перенесём табличную информацию (исходные данные) из статистического сборника в файл Excel, подписав вверху названия переменных (Gini, Fond и т.д., чтобы затем их SPSS прочёл как переменные);

2. Загрузим SPSS и импортируем туда сохранённые данные из Excel (File - Open - Data, указать тип .xls);

3. При необходимости можно подписать метки переменных;

4. Получим описательную статистику показателей (Analyze - Descriptive Statistics - Descriptives);

5. Удалим из файла данных те регионы, где отсутствует полная информация по всем показателям (осталось 70);

6. Стандартизируем показатели (повторим Analyze - Descriptive Statistics - Descriptives с флажком Save standardized values as variables;

7. Построим гистограммы показателей (Graph - Histogram);

8. Найдём корреляции показателей (Analyze - Correlate - Bivariate);

9. Удалим из файла данных Москву;

10. Проведём пробный иерархический анализ (Analyze - Classify - Hierarchical Cluster);

11. Найдём координаты кластерных центров для сохранённого решения с 6 кластерами (Analyze - Compare Means - Means);

12. Проведём кластеризацию на 6 кластеров с методом k-средних (Analyze - Classify - K-Means Cluster).

Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты