Электроизоляционная керамика

Электроизоляционная керамика

Министерство образования Российской Федерации

Уфимский Государственный Нефтяной Технический Университет

Кафедра автоматизации производственных процессов

Реферат на тему:

«Электроизоляционная керамика»

Выполнил: ст. гр. АЭ-01-01

Швыткин К.Е.
Проверил:

Прахова Т.Ю.

Уфа 2004

СОДЕРЖАНИЕ:

стр.

1. Классификация и основные свойства электроизоляционной керамики

2

2. Основные сырьевые материалы для производства электро-изоляционной керамики

6

3. Технология производства электрокерамических материалов и изделий

9

4. Механическая обработка и металлизация керамических из- делий

18

Приложения

22

Список литературы

31

1. КЛАССИФИКАЦИЯ И ОСНОВНЫЕ СВОЙСТВА ЭЛЕКТРО-ИЗОЛЯЦИОННОЙ
КЕРАМИКИ

Электроизоляционная керамика представляет собой материал, получаемый из формовочной массы заданного химического состава из минералов и оксидов металлов. Любая керамика, в том числе и электроизоляционная,— материал многофазный, состоящий из кристаллической, аморфной и газовой фаз. Ее свойства зависят от химического и фазового составов, макро- и микроструктуры и от технологических приемов изготовления./1/

В электрической и радиоэлектронной промышленности керамическая технология широко применяется для изготовления диэлектрических, полупроводниковых, пьезоэлектрических, магнитных, металлокерамических и других изделий. В настоящее время, особенно с проникновением в быт электронной техники, из электроизоляционной керамики изготавливаются десятки тысяч наименований изделий массой от десятых долей грамма до сотен килограммов и размерами от нескольких миллиметров до нескольких метров. В ряде случаев изделия из керамики, главным образом из электрофарфора, покрываются глазурями, что уменьшает возможность загрязнения, улучшает электрические и механические свойства, а также внешний вид изделия./14/

Электрофарфор является основным керамическим материалом, используемым в производстве широкого ассортимента низковольтных и высоковольтных изоляторов и других изоляционных элементов с рабочим напряжением до 1150 кВ переменного и до 1500 кВ постоянного тока./8/

Преимущества электрокерамики перед другими электроизоляционными материалами состоят в том, что из нее можно изготовлять изоляторы сложной конфигурации, кроме того она имеет широкий интервал спекания. Сырьевые материалы мало дефицитны, технология изготовления изделий относительно проста./15/ Электрофарфор обладает достаточно высокими электроизоляционными, механическими, термическими свойствами в области рабочих температур; он выдерживает поверхностные разряды, слабо подвержен старению, стоек к воздействию атмосферных осадков, многих химических веществ, солнечных лучей и радиационных излучений./8/

В связи с передачей энергии высоким и сверхвысоким напряжением на дальнее расстояние резко возросли требования к качеству высоковольтных изоляторов, главным образом к механической прочности./12/

В последние годы выпускаются надежные высокопрочные изоляторы оптимизированной конструкции из электрофарфора высокого качества. Известно, что прочность фарфора при сжатии в 10—20 раз выше прочности при изгибе или растяжении.

По назначению компоненты фарфора различаются на пластичные и отощающие, а по роли при термической обработке — на плавни и кристаллорбразующие.

Механическая прочность фарфора в значительной степени зависит от механических свойств и кристаллической структуры отощающего материала, а также образованных в процессе обжига сетчатых волокнистых микроструктур кристаллической фазы (в частности, игл муллита). Стеклофаза в структуре фарфора ухудшает механическую прочность, так же как и наличие пор, неблагоприятно влияющих на распределение напряжений.

Наравне с обычным фарфором налажен выпуск фарфора с повышенным содержанием муллита, фарфор кристобалитовый и корундовый. В последнем кремнезем в шихте частично заменен корундом./13/

Большинство корундовых кристаллов при обжиге остается в исходной форме и благодаря высокому сопротивлению упругой деформации образует прочный каркас микроструктуры. Незначительная часть растворяется в стек-лофазе и является причиной возникновения вторичного муллита. Как следует из табл. 1 (см. приложения), механическая прочность корундового фарфора значительно выше прочности обычного фарфора.

Наиболее перспективным является корундовый фарфор./16/

Следует ожидать, что традиционные способы производства, т. е. литье изоляторов в гипсовые формы, а для больших опорных изоляторов — склейка отдельных элементов до обжига, заменяется пластическим прессованием, выдавливанием массивного цилиндра или трубки с дополнительной обработкой на копировальных станках, а также изостатическим прессованием заготовок с последующей автоматической обработкой. Использование последнего способа производства изоляторов существенно сократит технологический цикл и объем трудозатрат./5/

По ГОСТ 20419-83 (соответствует СТ СЭВ 3567-83) «Материалы керамические электротехнические» эти материалы по их составу классифицируются следующим образом:

Группа 100 материалы на основе щелоч-

ных алюмосиликатов

(фарфоры):

Подгруппа силикатный фарфор, со-

110 держащий до 30% А12О3;

Подгруппа силикатный фарфор тон-

110.1 кодисперсный;

Подгруппа силикатный фарфор прес-

111 сованный;

Подгруппа силикатный фарфор вы-

112 сокой прочности;

Подгруппа глиноземистый фарфор

120 (содержащий 30—50 %

А1203);

Подгруппа глиноземистый фарфор

130 высокой прочности, со-

держащий свыше 50 %

А1203.
Группа 200 материалы на основе си-

ликатов магния (стеати- ты) :

Подгруппа стеатит прессованный;

210

Подгруппа стеатит пластичный;

220

Подгруппа стеатит литейный

220.1
Группа 300 материалы на основе ок- сида титана, титанатов,

станнатов и ниобатов;

Подгруппа материалы на основе ок-

310 сида титана;

Подгруппа материалы на основе ти-

340 танатов стронция, вис-

мута, кальция;

Подгруппа материалы на основе ти-

340.1 таната кальция;

Подгруппа материалы на основе

340.2 стронций-висмутового ти- таната;

Подгруппа материалы на основе

350 титаната бария с ?r до

3000;

Подгруппа материалы на основе ти-

350.1 таната бария, стронция, висмута;

Подгруппа материалы на основе ти-

351 таната бария с ?г свыше

3000;

Подгруппа материалы на основе ти-

351.1 таната бария, станната и цирконата кальция.

Группа 400 материалы на основе

алюмосиликатов магния

(кордиерит) или бария

(цельзиан), плотные:

Подгруппа кордиерит;

410

Подгруппа цельзиан.

420
Группа 500 материалы на основе

алюмосиликатов магния,

пористые:

Подгруппа
510. материалы на

Подгруппа основе алюмосиликатов

511 магния, пористые термо

Подгруппа стойкие;

512

Подгруппа высококордиеритовый
520. материал, пористый;

Подгруппа высокоглиноземистый

530 материал, пористый, тер-

мостойкий.
Группа 600 глиноземистые материа-

лы (муллитокорундовые):

Подгруппа глиноземистый матери-

610 ал, содержащий 50 —65 % А1203;

Подгруппа глиноземистый матери-

620 ал, содержащий 65 —80 % А1203;

Подгруппа глиноземистый матери-

620.1 ал, содержащий 72 —77 % А1203.
Группа 700 высокоглиноземистые ма-

териалы (корундовые):

Подгруппа высокоглиноземистый

780 материал, содержащий

80—86 % А12О3;

Подгруппа высокоглиноземистый

786 материал, содержащий

86—95 % А12О3;

Подгруппа высокоглиноземистый

795 материал, содержащий

95—99 % А12О3;

Подгруппа высокоглиноземистый

799 материал, содержащий свыше 99 % А1203./1/

Электроизоляционные керамические материалы по назначению классифицируются согласно табл. 2 (см. приложения)./16/

Если поры керамики сообщаются между собой и поверхностью изделия, то она называется «пористой», т. е. имеющей «открытые» поры.

Все керамические материалы более или менее пористые. Даже в обожженной до максимальной плотности керамике объем пор (закрытых) составляет 2—6 %, а в пористых материалах— 15—25 %.

Открытая пористость измеряется значением водопоглощения, т. е. количеством воды, поглощаемым материалом до насыщения и отнесенным к массе сухого образца.

В тех случаях, когда водопоглощение образца не превышает 0,5 %, для определения пористости часто применяется качественный метод: прокраска образцов в 1 %-ном спиртовом растворе фуксина. Наличие открытой пористости определяется по проникновению красителя в толщу образца.

Для характеристики плотности керамики употребляют параметр — кажущаяся плотность, ее значение 1800—5200 кг/м3./13/

2. ОСНОВНЫЕ СЫРЬЕВЫЕ МАТЕРИАЛЫ ДЛЯ ПРОИЗВОД-СТВА ЭЛЕКТРОЛЯЦИОННОЙ
КЕРАМИКИ

Сырьевые материалы для производства электрофарфора. Для изготовления электрофарфора основными сырьевыми материалами служат огнеупорные глины, кварц, пегматиты, полевые шпаты, каолины, глинозем, ашарит и циркон (для производства соответственно глиноземистого, ашаритового и цирконового фарфора), мел и доломит (в качестве плавней, главным образом, в глазури) и др.

Огнеупорные глины и каолины представляют собой тонкозернистые (от коллоидной дисперсности до размеров частиц менее 2 мкм) водные алюмосиликаты; для них характерна слоистая структура.

Основными составляющими тонкозернистой фракции глинистых пород являются минералы каолиновой группы с химическими формулами А12О3 x x2SiO2 • 2Н2О
(каолинит), А12О3 • 2SiO2 • 4Н2О (галлуазит) и др. Для производства высоковольтного фарфора отечественными заводами используются глины и каолины, химический состав которых и потери по массе при прокаливании приведены в табл. 3 и 4 (см. приложения).

Кварцевые материалы. Кристаллический кремнезем SiO2 является одним из основных компонентов фарфоровой массы, который вводят в состав шихты в виде кварцевого песка или жильного кварца. Размер гранул кварцевых песков составляет 0,05—3 мм. Кристаллический кремнезем существует в нескольких полиморфных формах; три основные — кварц, тридимит и кристобалит. В свою очередь кварц и кристобалит имеют ?- и ?-модификации, тридимит — ?-, ?- и
?-модификации. Стабильными формами являются ?-кварц (при температуре ниже
573 °С), ?-тридимит (870—1470 °С) и ?-кристобалит (1470—1710°С). Переход из одной модификации кремнезема в другую сопровождается изменением объема, плотности и других параметров. При производстве электрокерамики используются пески и жильный кварц, химический состав которых приведен в табл. 5 (см. приложения).

В зависимости от месторождения кварцевые пески имеют примеси (Fe2O3,
TiO2, A12O3, CaO, MgO и др.), наиболее нежелательные из которых Fe2O3 и
ТiO2 (допустимое содержание не более 0,15 %), СаО и MgO (не более 0,2 %).

Полевые шпаты представляют собой безводные алюмосиликаты, содержащие щелочные (Na+, К+) и щелочно-земельные (Са2+) катионы. Основные виды применяемых в керамическом производстве полевых шпатов: калиевый
(микроклин) с приблизительной формулой К2О•А12O3•6SiO2, натриевый (альбит)
Na2O•Al2O3•6SiO2, кальциевый (анортит) СаО•А12О3•2SiO2 и бариевый
(цельзиан) ВаО•А12О3•2SiO2. Полевые шпаты всегда содержат примеси оксидов железа, магния, кальция и др./18/

Лучшим для изоляционной керамики полевым шпатом является микроклин. Из-за повышенного содержания Na2O в полевом шпате снижаются температура обжига, вязкость стеклофазы керамики и существенно ухудшаются его электрофизические свойства. Чем больше соотношение К2О и Na2O в полевом шпате, тем лучше свойства керамики.

В связи с ограниченностью запасов высококачественного полевого шпата для производства высоковольтных изоляторов используют пегматиты.

Пегматиты представляют собой крупнозернистые кристаллические породы — смесь полевого шпата с кварцем. Химический состав пегматитов и полевых шпатов приведен в табл. 6 (см. приложения).

Глинозем — безводный оксид алюминия Al2О3 — представляет собой порошок со средними размерами сферических гранул 50— 200 мкм. Глинозем широко применяется как основной компонент электрофарфора и ультрафарфора (на основе корунда) и в качестве самостоятельного материала для изготовления высоковольтных, высокочастотных изоляторов, конденсаторов, деталей вакуум- плотных узлов (корпусов предохранителей, колб натриевых ламп, корпусов полупроводниковых вентилей, обтекателей антенн, плат для интегральных схем и др.).

Безводный оксид алюминия существует в нескольких кристаллических модификациях, из которых самой устойчивой является ?-А12О3 (корунд). Эта модификация характеризуется малым tg??2•10-4, высоким ??1014 Ом•м, высокой теплопроводностью и стойкостью к термоударам, наибольшей плотностью
(3999 кг/м3).
Две другие модификации: ?-А12О3 и ?-А12О3, последняя из которых представляет собой соединение глинозема со щелочными и щелочноземельными оксидами, имеют меньшую плотность (соответственно 3600 и 3300—3400 кг/м3) и более высокие значения tg? (?50•10-4 и 1000•10-4). Технический глинозем представляет собой в основном ?-А12О3 с частичным содержанием гидратов глинозема.

При нагреве ?-Аl2О3 переходит в ?-А12О3 с уменьшением объема на 14,3 процента. Для уменьшения усадки керамики при обжиге технический глинозем предварительно обжигают при температуре 1450—1550 °С.

Спектрально чистый корунд плавится при 2050 °С, а изделия из него при небольшой механической нагрузке могут быть использованы даже при температуре до 1800°С.
Для производства электроизоляционной керамики применяются технический глинозем (шесть сортов), электроплавленный корунд и глинозем особой чистоты в зависимости от назначения керамики.

Кальцит — карбонат кальция СаСО3, представляющий собой плотный кристаллический агрегат, называется мрамором, а при тонкодисперсной структуре — мелом. При нагреве СаСО3 разлагается с выделением СО2 согласно реакции СаСО3 > СаО + СО2^. Скорость разложения зависит от скорости подъема температуры и от давления воздуха. При нормальных условиях температура разложения составляет порядка 900 °С.

Для производства электроизоляционной керамики в основном используют мел
Белгородского месторождения с содержанием СаСО3 не менее 98 %.

В керамике карбонат кальция используется как основной компонент кристаллических фаз титанатов, станнатов и цирконатов кальция, анортита, волластонита, а также входит в состав стеклофазы различных электрокерамик и глазурей.

Ашарит — борат магния 2MgO•B2O3•H2O является стеклообразующим оксидом.
Его твердость по Моосу — 4. Он добавляется в керамические массы в количестве 2—3 %. Ашарит в состав ашаритового фарфора вводится в виде предварительно приготовленного спека из глинозема, ашарита и полевого шпата в количестве до 60 % массы, для улучшения электроизоляционных свойств фарфора.

Циркон ZrO2•SiO2 (цирконовая руда) имеет твердость 7—8; плотность его около 4700 кг/м3. Руду обогащают, в результате полученный циркон содержит
ZrO2 не менее 60 % и Fe2O3 не более 0,15 %. Циркон используется в качестве основного компонента в стойкой к термоударам керамике и в виде части кристаллической фазы цирконового фарфора. В последнем случае циркон вводится в состав фарфора вместо кварца, кристаллическая фаза керамики в таком случае представлена цирконом и муллитом. Химический состав сырья, содержащего цирконий, приведен в табл. 7 (см. приложения)./13/

Сырьевые материалы для производства других видов керамики. Тальк разных месторождений имеет состав, близкий к 3MgO•4SiO2•H2O или 4MgO•5SiO2•H2O, с незначительным количеством других оксидов. Лучшие разновидности талька отличаются малым содержанием СаО (от 0,2 до 1 %) и Fe2O3 (от 0,3 до 0,8 %).
Тальк должен иметь однородный состав без прослоек, а потери массы при прокаливании не должны превышать 5—7 %.

Химический состав тальков, используемых для производства стеатитов, приведен в табл. 8 (см. приложения).

Диоксид титана — мелкодисперсный порошок белого цвета с желтоватым оттенком. Для природного и полученного химическим путем диоксида титана характерен полиморфизм.

Технические данные диоксида титана приведены в табл. 9, химический состав — в табл. 10 (см. приложения)./17/

3. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЭЛЕКТРОКЕРАМИЧЕСКИХ МАТЕРИАЛОВ И ИЗДЕЛИЙ

В общем случае технологический процесс производства электрокерамических изделий можно представить схемой рис. 1 (см. приложения). Для каждого конкретного случая процесс будет несколько видоизменяться, однако можно отметить общие для большинства случаев основные этапы производства: приготовление формовочной массы; оформление заготовок изделий; сушка, глазурование и обжиг изделий. В некоторых случаях обожженные изделия могут подвергаться дополнительной механической обработке./5/

Приготовление формовочной массы. Керамическая формовочная масса характеризуется размерами и распределением частиц; от этого зависят плотность упаковки, влагосодержание и прочность заготовки до обжига, технологические свойства материала, а также характеристики обожженных керамических изделий.

Измельчение компонентов является одним из основных процессов при приготовлении формовочных масс. Как правило, твердые минеральные компоненты массы сначала подвергают грубому измельчению в щековых дробилках и на бегунах, затем просеивают на виброситах для получения заданной фракции, далее производят мокрый или сухой тонкий помол на ротационных шаровых мельницах периодического или непрерывного действия. Сверхтонкий помол производят в струйных мельницах с использованием сжатого воздуха.

Степень измельчения отдельных компонентов массы зависит от требований, предъявляемых к материалу, размеров изделий и применяемых способов оформления, сушки и обжига. При измельчении обычно происходит смешение компонентов массы. Степень измельчения проверяют ситовым и микроскопическим анализами, а в лабораторных условиях — седиментационным. Для удаления частиц железа измельченную массу пропускают через магнитный сепаратор.

Обезвоживание водного шликера после мокрого помола производится на фильтр-прессе под давлением 0,8—3 МПа. Масса, остающаяся между пластинами фильтра в виде коржей, в зависимости от назначения проходит различную обработку. При изготовлении масс для пластичной формовки коржи поступают для переминки в вакуум-прессы, с помощью которых обеспечивается хорошее извлечение воздуха, окончательная переминка массы и выдавливание ее через мундштук, придающий заготовкам определенный профиль. Заготовки используются для формовки изделий пластичными методами.

Для приготовления водного литейного шликера коржи распускаются в шликерных мешалках в воде с добавкой электролита и доводятся до нужной влажности. После вакуумирования шликер подается на литье. Безглинистые массы или массы с небольшим содержанием глинистых веществ (например, конденсаторные массы с содержанием около 3 % бентонита) не подвергают обезвоживанию на фильтр-прессе, а используют как литейный шликер после вакуумировки.

При приготовлении масс, предназначенных для изготовления изделий методом прессования, коржи с добавкой отходов формовочной массы подвергают сушке и дроблению. Затем масса просеивается, пропускается через магнитный сепаратор, вводятся связующие вещества, производится тщательное перемешивание и приготовляются гранулированные (гранулы размером 0,5—2 мм отделяют от пыли на соответствующих ситах) пресс-порошки.

Страницы: 1, 2, 3



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты