Проектирование радиолокационной станции для обнаружения надводных целей в пределах речного шлюза Усть-Каменогорской гидроэлектростанции
p> T0 – температура окружающей среды 290 К;

Вn – шумовая полоса пропускания преддетекторного фильтра приемника;

Так как вероятность правильного обнаружения Рпо=0,95 и вероятность ложной тревоги Рлт=10-4, то по рис. 4.3 из [11] определяем отношение сигнал/шум q=32 дБ или q=1585. Зададимся шумовой полосой пропускания приемника, Вn=(100 Гц, так как скорость движения целей в шлюзе не превышает
2 м/с, то максимальный доплеровский сдвиг при длине волны (=0,04 м составит fд=100Гц.

Рассчитаем коэффициент направленного действия передающей и приемной антенны по формуле [9]: где Sэф – эффективная площадь раскрыва антенны равная Sэф=0,25·?·l1· l2, l1 и l2 линейные размеры антенны.

Таким образом, с учетом вышеприведенных соотношений, уравнение дальности примет вид:

Мощность передатчика составляет 30 мВт.

Радиолокационная система будет производить последовательное сканирование зоны обзора. Местоположение цели будет определяться по пересечению узконаправленных лучей диаграмм направленности приемной и передающей антенн. На каждый элемент разрешения передающей антенны приходится один период обзора приемной антенны (см. рис. 2.1.2).

Рисунок 3.2 –Метод обзора шлюзовой камеры

Чтобы определить период обновления информации зададимся периодом обзора приемной антенны. Пусть он равен Тобз. пр.=1 с, так как меньший период обзора сложно будет реализовать ввиду инерционных свойств антенны, а увеличение периода обзора негативно влияет на время обновления информации.

Таким образом, если Тобз. пр.=1 с, и за это время передающая антенна должна “освещать” один элемент разрешения по азимуту, то:

(3.4)

где Фаз – зона обзора по азимуту;

?аз – разрешающая способность по азимуту.

Период обзора передающей антенны равен времени обновления информации на индикаторе.

Из (2.1.4) следует что, время облучения цели равно Тобл.=1 с, а время наблюдения отраженного сигнала Тнаб.=1/45=0,022 с.
Из произведенных расчетов видно, что тактико-технические характеристики не противоречат техническому заданию и сравнимы с параметрами аналогичных РЛС, рассмотренных в первой главе.

3.2 Расчет влияния отражений от поверхности воды

Проектируемая радиолокационная станция осуществляет наблюдение за объектами внутри шлюза.

При обзоре водной поверхности, поступающие на вход РЛС отраженные сигналы, несут информацию как о находящихся в зоне обзора объектах, так и о физических свойствах водной поверхности, что в данном случае является нежелательным фактором. Необходимо учитывать отражения от водной поверхности.

В данном разделе произведем анализ отражений радиолокационного сигнала от водной поверхности, для чего воспользуемся коэффициентом отражения ?0, значения, которые приведены в таблице 2.1 [9]. Для водной поверхности коэффициент отражения равен ?0= -40 дБ. Зная это можно определить удельную эффективную площадь рассеяния воды: где ?н – угол обзора поверхности (в данном случае воды).

Максимальный уровень помех в результате отражения радиолокационного сигнала от поверхности воды возникает при наибольшей эффективной площади рассеяния, то есть в случае наибольшей “освещаемой” поверхности или при наихудшей разрешающей способности.

Рисунок 3.3 – Элемент обзора РЛС

Найдем максимальную площадь водной поверхности, которая одновременно попадает под обзор радиолокационной станции, это происходит при обзоре наиболее удаленной части шлюзовой камеры. Площадь образуется в результате пересечения диаграмм направленности приемной и передающей антенны на противоположном краю шлюза (см. рис. 3.3).

Из рисунка видно, что площадь: где из геометрических формул: тогда: где: учитывая вышеизложенное:

И так, эффективная площадь рассеяния участка воды, площадь которого dS, составляет (угол обзора ?н лежит в пределах 10…90?, выбираем максимальное значение):

Как видно, эффективная площадь рассеяния воды гораздо меньше эффективной площади рассеяния целей, которые необходимо обнаруживать.
Следовательно, мощность, отраженного от водной поверхности, радиолокационного сигнала будет много меньше полезного сигнала.

Проведя подобные же расчеты для стен шлюзовой камеры, коэффициент отражения ?0 для которых (для бетона ?0= -32 дБ) тоже очень мал, можно убедится, что эффективная площадь рассеяния целей гораздо больше ЭПР стен шлюза и отражения от них не повлияют работу радиолокационной станции.

Найдем из (2.1.3) мощности шумового сигнала на входе приемника:

Мощность полезного сигнала на входе приемника:

Зная значения мощностей шума и полезного сигнала на входе приемника можно найти их отношение и сравнить с требуемым. что удовлетворяет требованию к отношению сигнал/шум, которым мы задавались при предварительном расчете тактико-технических характеристик. Это говорит о том, что на фоне шумового сигнала, отраженного от водной поверхности, радиолокационная станция будет различать необходимые цели с заданными вероятностями правильного обнаружения и ложной тревоги.

4 РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ РЛС

4.1 Разработка структурной схемы передатчика

Произведем разработку структурной схемы радиолокационной станции с учетом требований к ее функциональным обязанностям. РЛС должна обнаруживать надводные цели с эффективной площадью рассеяния большей заданной и определять, в случае движущихся целей, их скорости и направление движения.

Как было сказано ранее, радиолокационная станция работает в режиме непрерывного излучения. Передатчик РЛС излучает в пространство немодулированные колебания с частотой f0=7,5 ГГц и мощностью P=30 мВт. В передатчике осуществляется генерация заданной частоты и усиление.

На такой большой частоте очень сложно реализовать генератор с необходимой стабильностью, поэтому необходимо генерировать меньшую частоту, а потом увеличивать её в умножителях частоты до нужного значения. Для стабилизации частоты наиболее целесообразно применить кварцевый резонатор
(рисунок 4.1).

Чтобы избежать громоздкого многокаскадного умножителя, нужно генерировать как можно большую частоту в кварцевом автогенераторе. Их частота составляет порядка нескольких сотен мегагерц при использовании высших гармоник кварцевого резонатора. В данном случае выберем рабочую частоту генератора 150 МГц. Чтобы получить необходимую частоту излучения станции, требуется умножить колебания генератора в пятьдесят раз, для этого устанавливаются три последовательных каскада умножения частоты в 5, в 5 и в
2 раза. Затем полученные колебания усиливаются в усилительном каскаде до нужного уровня мощности.

Рисунок 4.1 – Блок-схема передатчика РЛС

После усиления необходимо отфильтровать полученный сигнал от высших гармоник, появившихся в результате работы нелинейного элемента
(транзистора) в усилительном каскаде. Эту функцию выполняет выходная колебательная система, выполненная в виде фильтра низких частот. Кроме того, она обеспечивает согласование антенны с усилителем, то есть преобразовывает нагрузочное сопротивление антенны в эквивалентное сопротивление нагрузки оконечного каскада.

С выходной колебательной системы готовый радиолокационный сигнал поступает в антенну и излучается в пространство.

4.2 Разработка структурной схемы приемника

Приемный тракт проектируемой радиолокационной станции должен усилить принятые приемной антенной отраженные от цели сигналы, произвести их фильтрацию, при которой обеспечивается максимальное различение полезных эхо- сигналов и помех, и извлечь из него полезную информацию.

Можно было бы реализовать супергетеродинный приемник с нулевой промежуточной частотой, функцию гетеродина в котором выполняет просачивающийся сигнал от передатчика, но такие приемники не достаточно чувствительны вследствие повышенного шума на низких промежуточных частотах, обусловленного так называемым фликкер-эффектом (мерцательный шум). Величину мерцательных шумов можно сделать небольшой по сравнению с нормальным шумом супергетеродинного приемника, используя достаточно большую промежуточную частоту, это объясняется обратно пропорциональной зависимостью мерцательных шумов от частоты

Радиолокатор должен измерять скорости движения целей, что реализовывается на основе эффекта Доплера.

Рисунок 4.2 – Блок-схема простого доплеровского измерителя скорости

На рисунке 4.2 приведена блок-схема приемника радиолокатора с непрерывным излучением, который работает на ненулевой промежуточной частоте. Вместо обычного местного гетеродина используется опорный сигнал, получаемый при смешении части сигнала передатчика и местного сигнала, частота которого равна промежуточной частоте приемника. Так как выходной сигнал смесителя состоит из двух боковых полос, расположенных по обе стороны от несущей, а так же более высоких гармоник, то в качестве опорного сигнала с помощью узкополосного фильтра выбираем верхнюю из боковых полос.
В данной схеме стабильность частоты передатчика не влияет на работу приемника, так как отклонение частоты f0 компенсируется таким же отклонением опорной частоты, и промежуточная частота остается неизменной.
Гораздо легче обеспечить стабильность частоты местного гетеродина, чем приемника, так как она гораздо меньше. Промежуточная частота fп=5 МГц.

Однако подобный приемник определяет только модуль скорости и не может определить направление.

Рисунок 4.3 – Блок-схема приемника определения направления радиальной скорости и её значения.

Знак доплеровского сдвига частоты и, следовательно, направление движения цели можно определить, разделив принятый сигнал по двум каналам
(рисунок 4.3). Принятый сигнал разветвляется по каналам А и В и подводится к отдельным смесителям. Часть сигнала передатчика подается непосредственно к смесителю канала А. В канале В опорный сигнал от передатчика претерпевает сдвиг на 90?. В результате между доплеровскими частотами, возникающими в обеих каналах, имеется сдвиг фазы на 90?. Знак фазового сдвига определяет направление движения цели.

Для определения знака фазового сдвига на 90? оба сигнала сначала усиливаются и ограничиваются. Сигнал от ограничителя В дифференцируется, кроме того изменяется его полярность. Выходной сигнал от ограничителя А и дифференцированный выходной сигнал от В сравниваются в схеме совпадения, обозначенной «верхний селектор». При положительных сигналах верхний селектор генерирует импульс, что указывает на удаление цели. При приближении цели схема совпадений верхнего селектора не дает выходного сигнала. Появление сигнала на выходе схемы совпадения «нижний селектор», возникающего при сравнении выходного сигнала ограничителя А с выходным сигналом инвертирующей схемы, указывает на приближение, а не на удаление цели. Подсчет импульсов от двух схем совпадения позволяет определить направление и величину доплеровского сдвига частоты.

Каждый из приемников имеет свои достоинства и недостатки, объединение первого и исключение второго, приводит к совмещению двух схем приемников.
Кроме того, радиолокационная станция должна обнаруживать ещё и неподвижные цели, то есть не имеющих доплеровского сдвига. Для этого вводится канал С, в котором производится усиление промежуточной частоты в усилителе УПЧ, после чего пороговое устройство принимает решение о наличии или отсутствии цели (рис. 2.3.4)

Рисунок 4.4 – Структурная схема РЛС.

Рисунок 4.4 представляет собой структурную схему радиолокационной станции. Антенны снабжаются устройствами измерения угла поворота, которые определяют азимутальные углы поворота антенн, а следовательно, координаты цели. Сигналы с измерителей угла поворота и все обработанные в приемнике сигналы приходят на аналогово-цифровой преобразователь и затем уже информация, преобразованная в цифровой сигнал, поступает на индикатор, в роли которого выступает персональный компьютер.

5 РАСЧЕТ АВТОГЕНЕРАТОРА

Рассчитаем задающий генератор. Его основной функцией является генерация синусоидальных колебаний заданной частоты с необходимой стабильностью. Рабочая частота генератора fр=150 МГц,

Расчет производится по методике изложенной в [5]. Необходимую стабильность частоты обеспечиваем с помощью кварцевого резонатора.

Выберем транзистор. Для увеличения стабильности частоты в задающих автогенераторах выбирают транзисторы малой мощности. Чтобы фазовый сдвиг между колебаниями тока коллектора и напряжения базы можно было устранить с помощью корректирующей цепочки, следует выбирать транзистор, граничная частота fт которого больше, чем заданная частота колебаний fр. Этим требованиям удовлетворяет транзистор 2Т368А со следующими параметрами:
|граничная частота, fт, МГц |900; |
|постоянная времени цепи внутренней обратной связи ?ос, пс |4,5; |
|емкость коллекторного перехода Cк, пФ |1,2; |
|емкость эмиттерного перехода Cэ, пФ |3; |
|статический коэффициент передачи по току в схеме с ОЭ |50; |
|крутизна переходной характеристики в граничном режиме Sгр, мА/В |30; |
|допустимый ток коллектора Iк доп., мА |30; |
|допустимое напряжение на коллекторе Uк доп., В |15; |
|допустимое напряжение на базе Uб доп., В |4; |
| допустимая мощность рассеяния Pрас доп., мВт |225; |
| напряжение отсечки Uотс., В |0,6; |

Произведем расчет корректирующей цепочки.

Граничные частоты:

Активная часть коллекторной емкости и сопротивление потерь в базе:

Рассчитаем элементы корректирующей цепочки:

Эффективность применения корректирующей цепи зависит от соотношения между Rкор и Rз – требуется выполнение условия Rкор>Rн. На практике достаточно, чтобы R`н=3Rн, обычно Rн = 50 Ом.
Тогда R`н=150 Ом.

Добротность последовательной цепочки CсвRн: емкость связи: емкость связи, пересчитанная в параллельную к емкости C2: емкость делителя (без учета емкости связи с нагрузкой):

Расчет цепи смещения.

Чтобы делитель R1R2 не шунтировал колебательную систему, должно выполнятся неравенство Rр(C?/C1)20.9*ikdop then goto 40 input " Граничная частота F betta, МГц ",fb input "14 - Задайте угол отсечки, град ",tet tetta=tet*pi/180 print "Измените заданные параметры да - 1" print " нет -
0" input " ",art if art = 0 then goto 35
33 print " Какой из заданных параметров измените? " input " ",ert if ert = 1 then input pkdop if ert = 2 then input f if ert = 3 then input b if ert = 4 then input uots if ert = 5 then input sgr if ert = 6 then input ce

Продолжение приложения А

if ert = 7 then input ck if ert = 8 then input ubdop if ert = 9 then input ikdop if ert = 10 then input ukdop if ert = 11 then input lb if ert = 12 then input le if ert = 13 then input fb if ert = 14 then input tet cls
35 ksy=1-ikmax/sgr/ep uk1=ksy*ep ik1=fnalfa1(tetta)*ikmax ik0=fnalfa0(tetta)*ikmax p1=ik1*uk1/2 p0=ep*ik0 pr=p0-p1 if pr>pkdop then goto 50 kpd=p1/p0 ft=fb*b qu=ikmax/2/pi/ft/(1-cos(tetta))/1000000 uemin=uots-qu/ce*(1-cos(pi-tetta))*10^12 if uemin>abs(ubdop) then goto 60 ue0=uots-fngamm0(pi-tetta)*qu/ce*10^12 rk=uk1/ik1 kappa=1+fngamm1(tetta)*2*pi*ft*ck*rk/1000000 ibsr=2*pi*f*qu*kappa*1000000 rz=1/2/pi/fb/ce*10^6 pwsr=0.5*fngamm1(pi-tetta)/rz/ce*qu*qu/ce*10^24 rw=fngamm1(tetta)*2*pi*ft*le/kappa/1000 pw2sr=ibsr*ibsr*rw/2 pw=pwsr+pw2sr kp=(p1+pw2sr)/pw lw=lb+le/kappa cw=kappa*ce/fngamm1(pi-tetta) rpar=fngamm1(pi-tetta)*rz print " Режим работы:" print " Коэффициент использования напpяжения, B......…… ";ksy print " Напpяжение первой гармоники на коллекторе, В……";uk1 print " Амплитуда 1-й гаpмоники коллекторного тока, А……";ik1 print " Постоянная составляющая коллекторного тока, А……";ik0 print " Мощность первой гармоники на выходе, Вт......……....";p1 print " Мощность, потpебляемая коллекторной цепью, Вт…...";p0 print " Мощность, pассеиваемая на коллекторе, Вт.....………..";pr

Продолжение приложения А

print " КПД коллекторной цепи........................…………………";kpd print " Управляющий заряд, нКл.......................………………...";qu print " Минимальное мгновенное напpяжение на эмиттерном" print " переходе, В..........................…………………………....... ";uemin print " Постоянная составляющая на эмиттере, В.......………....";ue0 print " Сопротивление коллекторной нагрузки, Ом......………..";rk print " Амплитуда первой гармоники суммарного тока базы " print " учетом тока емкости коллекторного перехода, А……..";ibsr print " Сопротивление коррекции закрытого перехода, Ом…..";rz print " Мощность,потребляемая цепью коррекции, Вт....……..";pwsr print " Входное сопротивление, Ом....................……………….";rw print " Мощность, потребляемая на входе, Вт...........………….";pw2sr print " Мощность на входе, потребляемая каскадом, Вт.……..";pw print " Коэффициент передачи по мощности............…………..";kp print " Входная индуктивность, нГн...................……………….";lw print " Входная емкость, пФ.........................……………………";cw print " Усредненн. за период сопротивление коррекции, Ом ...";rpar print "Измените заданные параметры Да - 1" print " Нет - 0" input " ",arf if arf = 0 then goto 36 print " 1- Допустимая мощность рассеяния на коллекторе, Вт ",pkdop print " 2 - Рабочaя частоту, МГц………………………………...",f print " 3 - Статический коэффициент усиления по току ……...",b print " 4 - Напряжение отсечки, B………………………………",uots print " 5 - Крутизна в граничном режиме, A/B………………...",sgr print " 6 - Емкость эмиттерного перехода, пФ…………………",ce print " 7 - Емкость коллекторного перехода, пФ……………….",ck print " 8 - Допустимое напряжение на базе, В………………….",ubdop print " 9 - Допустимый ток коллектора, А ……………………..",ikdop print "10 - Допустимое напряжение на коллекторе, В…………",ukdop print "11 - Индуктивность базового вывода, нГн………………",lb print "12 - Индуктивность эмиттерного вывода, нГн ………….",le print "13 - Граничная частота F betta, МГц ……………………..",fb print "14 - Задайте угол отсечки, град …………………………..",tet goto 33
36 print #1, " Исходные данные для расчета" : print #1, print #1, " 1- Допустимая мощность рассеяния на коллекторе, Вт ",pkdop print #1, " 2 - Рабочaя частоту, МГц…………………………………",f print #1, " 3 - Статический коэффициент усиления по току ………",b print #1, " 4 - Напряжение отсечки, B………………………………..",uots print #1, " 5 - Крутизна в граничном режиме, A/B ………………….",sgr print #1, " 6 - Емкость эмиттерного перехода, пФ…………………..",ce

Продолжение приложения А

print #1, " 7 - Емкость коллекторного перехода, пФ………………...",ck print #1, " 8 - Допустимое напряжение на базе, В …………………..",ubdop print #1, " 9 - Допустимый ток коллектора, А ……………………….",ikdop print #1, "10 - Допустимое напряжение на коллекторе, В …………..",ukdop print #1, "11 - Индуктивность базового вывода, нГн ………………..",lb print #1, "12 - Индуктивность эмиттерного вывода, нГн ……………",le print #1, "Напряжение источника питания, В...............………………",ep print #1, "Максимальный ток коллектора, А................………………",ikmax print #1, "Граничная частота F betta,Њѓж...............………………….",fb print #1, "Угол отсечки, град............................……………………….",tet print #1, "Коэффициенты Берга для угла отсечки: " print #1, "Alfa0= ";fnalfa0(tetta) print #1, "Alfa1= ";fnalfa1(tetta) print #1, "Gamma0= ";fngamm0(tetta) print #1, "Gamma1= ";fngamm1(tetta) print #1, : print #1, print #1, " Режим работы:" : print #1, print #1, " Коэффициент использования напpяжения, B....………….. ";ksy print #1, " Напpяжение первой гармоники на коллекторе, В ………...";uk1 print #1, " Амплитуда 1-й гаpмоники коллекторного тока, А……….. ";ik1 print #1, " Постоянная составляющая коллекторного тока, А………...";ik0 print #1, " Мощность первой гармоники на выходе, Вт......…………...";p1 print #1, " Мощность, потpебляемая коллекторной цепью, Вт………..";p0 print #1, " Мощность, pассеиваемая на коллекторе, Вт.....…………….";pr print #1, " КПД коллекторной цепи.......................……………………...";kpd print #1, " Управляющий заряд, нКл.......................…………………….";qu print #1, " Минимальное мгновенное напpяжение на эмиттерном" print #1, " переходе, В..................................…………………………….
";uemin print #1, " Постоянная составляющая на эмиттере, В.......……………..";ue0 print #1, " Сопротивление коллекторной нагрузки, Ом......……………";rk print #1, " Амплитуда первой гармоники суммарного тока базы " print #1, " учетом тока емкости коллекторного перехода, А…………..";ibsr print #1, " Сопротивление коррекции закрытого перехода, Ом………..";rz print #1, " Мощность,потребляемая цепью коррекции, Вт....…………..";pwsr print #1, " Входное сопротивление, Ом....................…………………….";rw print #1, " Мощность, потребляемая на входе,
Вт...........……………….";pw2sr print #1, " Мощность на входе, потребляемая каскадом, Вт.…………..";pw print #1, " Коэффициент передачи по мощности............………………..";kp print #1, " Входная индуктивность, нГн...................…………………….";lw print #1, " Входная емкость, пФ..........................…………………………";cw print #1, " Усредненн. за период сопротивление коррекции, Ом
……...";rpar goto 80
40 print "Максимальны ток коллектора не должен"

Продолжение приложения А

print "Превышать ";0.8*ikdop;" A" : goto 30
50 print "Мощность рассеяния на коллекторе превышает допустимую" print " Измените исходные данные " goto 10
60 print "Мгновенное напряжение на базе превышает допустимое" print " Измените исходные данные " goto 10
70 print "Напряжение питания не должно превышать";ukdop/2;" B" goto 20
80 end

-----------------------
[pic]

[pic]

[pic]

[pic]
?????????"???–??/?????†???????????"???–??/?????†???????????"???–??/?????†???
????????"???–??/?????†???????????"???–??/?????†???????????"???–??/?????†????
?????
[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]

[pic]



Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты