Анализ систем безопасности, использующих GSM каналы связи

Рис.1  Схема передачи информации в GSM  охранной системе при использовании функции SMS.

GSM охранная система может включать в себя один или несколько GSM контроллеров серии TSS-705, а также средства контроля и управления этими GSM контроллерами – сотовые телефоны и (или) компьютеры.

GSM контроллеры устанавливаются на удаленных объектах. К каждому из них можно подключать:

- Различные дискретные и резистивные датчики. Например, контактные датчики, герконы, терморезисторы для контроля температуры, датчики охранной и пожарной сигнализации и т. п.;

- Видеокамеры (до 3 цветных или черно-белых видеокамер ( PAL или NTSC) на один контроллер);

- Микрофон и звуковой динамик;

- Исполнительные устройства (контроллер имеет 3 реле для управления такими устройствами);

- Кнопки для установки датчиков на охрану непосредственно на объекте;

- Кнопки и (или) считыватель кода различных идентификаторов (карт, брелоков) для снятия датчиков с охраны;

Примеры систем:  РСПИ "Риф Стринг-202",  "стрелец", "дельта".

К радиоканальным системам малого радиуса действия относятся беспроводные системы, работающие в частотном диапазоне (433 МГц и 2,4 ГГц) с малой выходной мощностью (10 мВт и 100 мВт соответственно).

В основном данные системы применяются для организации локальной беспроводной связи на территории крупных объектов. Радиус действия таких систем составляет обычно от нескольких сотен метров до нескольких километров в зависимости от условий распространения радиосигнала. При этом пункт централизованного наблюдения (ПЦН) обычно располагается на этом же объекте, либо организуется специальный выделенный канал связи для передачи информации на удаленный ПЦН. В настоящее время данные системы получили широкое распространения благодаря их относительно низкой стоимости и простоте монтажа. На сегодняшний день все больше и больше популярны приемопередатчики стандарта 2,4 ГГц, такие как ZigBee, NanoNet и др. Данные передатчики выпускаются в однокристальном исполнении с поддержкой стека высокоуровневых протоколов, что, безусловно, упрощает разработку систем беспроводной связи на их основе и дает разработчикам широкие возможности по реализации алгоритмов обмена данными. Недостатком данных систем являются их низкая помехозащищенность и малый радиус действия.

К радиоканальным системам большого радиуса действия. относятся системы, имеющие выделенный радиоканал и обеспечивающие радиус действия 20–100 км в условиях городской застройки. В состав данных систем входят абонентское оборудование, ретрансляторы (базовые станции) и пульт централизованного наблюдения. В большинстве своем системы данного класса используют частотный диапазон 146-174 МГц и выходную мощность 1–10 Вт. С точки зрения организации радиоинтерфейса системы можно разбить на две группы.

Системы, использующие стандартные УКВ-радиоинтерфейсы. Такие системы, как правило, используют частотную манипуляцию и ширину канала 12,5 или 25 кГц. Недостатком таких систем является низкая пропускная способность и невысокая помехозащищенность, так как сигнал с полосой 12,5 кГц легко подавить.  

Системы, использующие специализированные радиоинтерфейсы  используют радиоинтерфейсы, адаптированные под решение задач радиоохраны и обеспечивающие защиту информации и высокую помехозащищенность канала связи. Примером такой системы является радиоканальная система АРКАН, использующая для передачи узкополосные сигналы и алгоритм «прыгающих частот». Перестройка частоты происходит по случайному закону в широкой полосе (300–500 кГц). Данное решение обеспечивает высокую помехозащищенность и высокую емкость системы. К недостаткам радиоканальных систем большого радиуса действия можно отнести высокую стоимость инсталляции сети, однако при большом количестве абонентов эти затраты окупаемы. Данные системы широко применяются в средних и крупных городах на ПЦН с абонентской базой свыше 2000–3000 абонентов.

Спутниковые системы используют в качестве каналов связи спутниковую связь («ГлобалСтар», «Инмарсат», «Турайя»). Подобные системы применятся для контроля/охраны удаленных объектов, в местах, где отсутствует мобильная и проводная связь. Главным недостатком этих систем является высокая стоимость как абонентского оборудования, так и затрат на эксплуатацию. С другой стороны, для решения задач охраны удаленных одиночных объектов данные системы не имеют другой альтернативы. С точки зрения вопросов сопряжения ОПС и каналообразующего оборудования существует три решения: ОПС со встроенным радиоканальным оборудованием Данное решение простое и недорогое, в одном корпусе вы получаете и охранную панель с источником бесперебойного питания, и радиоканал. Недостатком данного решения является небольшое количество охраняемых зон, как правило, их не большее 4–8. Но для небольших объектов это вполне приемлемое и очень экономичное решение.

ОПС с внешним радиоканальным оборудованием, подключаемым через специализированный интерфейс. Системы данного типа обычно предлагают производители, имеющие широкую линейку систем ОПС и различные типы каналообразующего оборудования. Поэтому пользователь может в зависимости от конкретной задачи определить для себя состав проектируемой системы ОПС и собрать «конструктор» из необходимых компонентов. Как привило, данные системы используют шинные интерфейсы связи между узлами (например, RS-485). Преимущество данного подхода заключается в гибкости проектирования ОПС. В зависимости от задачи вы можете выбирать контрольную панель с необходимым количеством охранных зон, использовать радиоканал или проводную связь, при этом все оборудование будет унифицировано, иметь единую логику работы и единые протоколы обмены. Недостатком данного решения является то, что вы не сможете использовать оборудование разных производителей, а это не всегда удобно, например, в случае если вы собираетесь использовать системы ОПС одного производителя и радиоканал другого.

ОПС с внешним радиоканальным оборудованием, подключаемым через стандартный интерфейс. Данный подход решает проблему, описанную выше. Используя стандартный интерфейс, можно использовать оборудование разных производителей. Однако на сегодняшний день производители оборудования не стремятся разработать единый стандарт, наоборот – используют свои закрытые протоколы. Единственным открытым стандартом сегодня является интерфейс Contact ID, разработанный компанией ADEMCO и предназначенный для передачи сообщений по телефонным линиям в режиме тоновых посылок DTMF. Большинство контрольных панелей имеют данный интерфейс. Поэтому единственным решением для производителей каналообразующего оборудования для охранных систем было реализовать внутри своих устройств декодер ContactID. Данные решения сегодня широко применяются и в GSM-модемах, и радиоканальных системах. Пользователь, в свою очередь, может выбирать, какой канал связи использовать: проводной или беспроводной, при этом оборудование ОПС перемонтировать и перенастраивать не нужно, просто выход ContactID подключается либо к телефонной линии, либо на вход радиопередатчика.

Одной из самых быстроразвивающихся беспроводных технологий является ZigBee, который изначально разрабатывалась как низкоскоростной канал связи для объединения в сеть различных датчиков. Применительно к безопасности это могут быть датчики охранной и пожарной сигнализации.

Возможно, причем в скором времени ZigBee потеснит многие из существующих сегодня радиоканальных ОПС. Ведь почти все они разработаны вне каких-либо стандартов. У каждого производителя – свои протоколы обмена, и заменить имеющиеся на объекте беспроводные датчики на оборудование другого производителя невозможно. Если стандарт ZigBee получит распространение, что вполне вероятно, то заказчик получит возможность использовать в системах ОПС практически любые датчики на выбор. Тем более что стандартные профили (спецификации наборов команд и протоколов обмена) для конкретных приложений в области автоматизации зданий и систем безопасности разработаны, опубликованы, и все это вместе взятое гарантирует совместимость оборудования разных производителей.
Этот стандарт, не побоюсь повториться, хорош для соединения центрального узла с периферией, которая размещается территориально распределенно, причем за счет включения в систему ретрансляторов территория покрытия может быть весьма большой. Теоретически можно использовать ZigBee и в СКУД. Но этот канал имеет небольшую скорость передачи данных и небольшую дальность. Согласитесь, нерационально строить длинную цепочку ретрансляторов ради соединения контроллера с компьютером. Есть много более простых, а главное, дешевых и надежных способов.

Можно сказать, что все перечисленные технологии на сегодняшний день активно развиваются и широко применяются для решения задач охраны стационарных объектов. Выбор той или иной беспроводной системы определяется в зависимости от типа объектов, их количества, требований к надежности доставки сообщений и удаленности объектов. В некоторых случаях для повышения надежности используется резервирование каналов связи. Можно сказать, что будущее за беспроводными технологиями и скоро они полностью вытеснят с рынка проводные охранные системы.





1.2. ИСПОЛЬЗОВАНИЕ БЕСПРОВОДНЫХ КАНАЛОВ В СИСТЕМАХ ОХРАНЫ


Системы видеонаблюдения.

Первыми в данной области появились электронные устройства, способные отдавать лишь текстовые SMS-сообщения с охраняемого объекта. Такое устройство состояло из электрического блока, к которому можно было подключить 1-4 внешних датчика или шлейф охранной сигнализации и обычного мобильного телефона. Устройство можно было установить на всяком объекте, имеющем устойчивый прием GSM-сети. Принцип работы устройства основан на оповещении пользователя с помощью текстового SMS-сообщения, которое передавалось на мобильный телефон пользователя чрез GSM-канал в случае срабатывания охранного датчика или нарушения целостности шлейфа охранной сигнализации. Подобные устройства спешно завоевали популярность посреди хозяев небольших загородных домов и коттеджей невысокой ценой и простотой установки. В качестве ответной меры владелец подобного устройства при получении SMS-сообщения несложно перезванивал на мобильный телефон соседа или местного сторожа, тот, что в свою очередность, шел к дому и выяснял причины срабатывания. При всем при том сходные устройства имели и существенные недостатки, не разрешено было отличить неправильное срабатывание от тревожного без участия человека, а при тревожном событии нередко не разрешено было его предотвратить, При этом, при сильной загрузке сотовой сети SMS-извещение могло быть доставлено с опозданием от нескольких минут до нескольких часов, что делало данную систему ненужной. Современные системы видеонаблюдения по GSM как правило выполняют следующие функции: взаимодействие пользователя с устройством для получения видеоизображения может производиться в всякое время;  передача видеоизображения от 1-4 телекамер в реальном времени (задержка от начала события вплоть до отображения на приемном мониторе не более 1-2 сек); автоматический дозвон вплоть до пользователя по срабатыванию встроенного детектора движения и/или вешнего датчика; автоматическая запись фото и видеоинформации во встроенную память устройства; запись принимаемой фото и видеоинформации на жесткий диск компьютера; подключение внешнего охранного датчика или шлейфа к тревожному входу устройства;  подключение исполнительного устройства к релейному выходу устройства и прямое управление им по каналу связи.

Применение систем удаленного видеонаблюдения по GSM вероятно на удаленных объектах, где отсутствуют проводные каналы связи: загородные дома, дачи, склады, автостоянки, гаражи, автозаправочные станции, железнодорожные переезды. Для удаленного видеоконтроля за коммуникациями: водо-, газо- и нефтепроводы, электростанции, раздельно стоящие подстанции, вышки и тому подобное. Несмотря на кажущуюся сложность устройств видеонаблюдения по GSM, они остаются просты в подключении и комфортны в эксплуатации. Уже не требуется использование на передающей стороне мобильного телефона, GSM-модуль встроен прямо в остов прибора. Электропитание осуществляется от источника постоянного тока с широким диапазоном напряжений 8-15В или от электросети 220В.

Альтернативой GSM-каналу являются беспроводные сети WLAN (Wireless Local Area Network - беспроводная локальная сеть). Сеть WLAN - вид локальной вычислительной сети (LAN), использующий для связи и передачи данных между узлами высокочастотные радиоволны, а не кабельные соединения.
Пользовательские устройства можно интегрировать в сеть, установив на них беспроводные сетевые адаптеры. Для обеспечения беспроводным пользователям доступа к уже существующей сети Ethernet нужно установить беспроводную точку доступа. Наиболее важный элемент беспроводных сетей - беспроводная точка доступа (англ. Wireless Access Point)

Точки доступа призваны выполнять самые разнообразные функции, как для подключения группы компьютеров (каждый с беспроводным сетевым адаптером) в самостоятельные сети, так и для выполнения функции моста между беспроводными и кабельными участками сети. Такие совмещённые сети называются Инфраструктурой (Infrastructure) и используются для доступа к центральным базам данных или беспроводного подключения мобильных пользователей.

Рис. 2 . Схема построение видеосистемы на WI-FI

 Cтандарт Wi-Fi  (англ. Wireless Fidelity - "беспроводная точность", по аналогии с Hi-Fi - стандарт на оборудование Wireless LAN).  При использовании современных потоковых алгоритмов сжатия скорости 0,5 Мбит/с этого вполне  достаточно для передачи одного канала видео приличного качества. Также это расстояние можно увеличивать с помощью направленных антенн и промежуточных точек доступа. 

Защита видеоинформации в беспроводных IР-системах видеонаблюдения достигается несколькими способами. Ключевыми среди них являются: применение брандмауэров, использование паролей и шифрование. Брандмауэр работает как электронные "ворота", пропускающие зарегистрированных пользователей и запрещающие доступ неавторизованным лицам. Применение паролей позволяет не только ограничить доступ к системе видеонаблюдения, но и распределить права доступа персонала к определенным видеокамерам. А при шифровании попытки перехвата зашифрованных данных в IP-системе охранного видеонаблюдения становятся бессмысленными, если злоумышленник не знает уникального кода для расшифровки потока данных. Код, в свою очередь, устанавливается системным администратором. 

GPS мониторинг транспорта.

Спутниковый мониторинг транспорта - система спутникового мониторинга и управления подвижными объектами, построенная на основе использования современных систем спутниковой навигации (GPS/ГЛОНАСС), оборудования и технологий связи (GSM/УКВ),  вычислительной техники и цифровых карт. GPS мониторинг транспорта — технология, применяемая в диспетчерских службах на транспорте, а также для решения задач транспортной логистики в системах управления перевозками (англ. TMS Transportation management system) и автоматизированных системах управления автопарком (англ. FMS — Fleet Management System) для контроля фактических маршрутов транспортных средств при помощи системы GPS.

Автотрекер — прибор, устанавливаемый на автомобиль с целью отслеживания его дальнейшего перемещения и контроля его местоположения.

Обычно автотрекер определяет своё местоположение принимая сигналы ГЛОНАСС/GPS и отправляя их посредством мобильного интернет канала GPRS на сервер в интернете, на котором владелец прибора наблюдает его перемещения. Почти все современные (2008-2009 гг.) приборы, работающие на этом принципе, могут принимать входящие звонки.

Для решения задач мониторинга используются следующие компоненты системы:

- спутниковые системы навигации ( GPS – США, ГЛОНАСС — РФ),

- приёмники GPS и/или ГЛОНАСС,

- системы связи с центральным пунктом (космическая /GSM / УКВ ) и/или система локального накопления данных.

Иногда дополнительно используются дополнительные датчики, установленные на самом техническом средстве: текущий запас топлива, факт открывания двери или капота, факт наличия пассажира (такси),температура в рефрижераторе, факт работы или простоя спецмеханизмов (поворот стрелы крана, работы бетоносмесителя), факт нажатия тревожной кнопки и  т.п.

Полученные данные могут либо накапливаться в локальном устройстве и затем переноситься в центральную базу по возвращении в парк, либо передаваться на центральный сервер в режиме реального времени.

Системы GPS мониторинга транспорта решают следующие задачи:

- мониторинг включает отслеживание текущих координат, направления и скорости движения транспортного средства в реальном времени для нужд диспетчерских служб. В некоторых системах также возможна установка дополнительных датчиков на открытие дверей, включение/выключение исполнительных механизмов спецтехники, топливных датчиков, датчиков для измерения температуры в рефрижераторе и пр. Некоторые системы допускают подключение к бортовому компьютеру автомобиля (через CAN-шину) и удалённое чтение параметров эксплуатации транспортного средства.

-  учёт пройденного километража и расхода топлива нужен для своевременного прохода ТО, обоснования списания ГСМ бухгалтерией и пр. В системах TMS с помощью GPS производится автоматический учёт доставки грузов в заданные точки.

- контроль соответствия фактического маршрута автомобиля плановому позволяет повысить дисциплину водителей. В России, в отличие от развитых стран, эта функция крайне востребована для пресечения несанкционированного использования служебных транспортных средств наёмными водителями в целях личного обогащения, а также для пресечения несанкционированного слива топлива. По оценкам журнала «Логистика», только за счёт повышения дисциплины водителей в российских условиях системы GSM мониторинга окупаются за несколько месяцев.

- безопасность: знание координат позволяет быстро найти угнанное либо попавшее в беду транспортное средство. Дополнительно автомобили могут оборудоваться скрытой кнопкой, нажатие либо ненажатие на которую отсылает тревожный сигнал в диспетчерский центр. Кроме этого, некоторые терминалы GPS мониторинга могут работать в режиме GSM-сигнализации, то есть звонить на заданный телефонный номер в случае срабатывания штатной сигнализации.

Типичная система GPS мониторинга состоит из трёх звеньев: терминалов, устанавливаемых на автомобили, сервера и клиентских рабочих мест. Терминалы представляют собой специализированные GPS-трекер, содержащие модуль собственно GPS и модуль сотовой связи (GSM или CDMA). Функции сервера может выполнять обычный ПК с установленным серверным ПО. В отличие от рабочих мест, сервер должен быть всегда включён, так как именно на нём накапливаются данные о маршрутах. Клиентское ПО в редких случаях может быть объединено в одну программу с серверной частью, но как правило допускается одновременное подключение нескольких рабочих мест к одному серверу.

Страницы: 1, 2, 3, 4, 5, 6



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты