Проблеми штучного інтелекту

MYCIN

Це експертна система, розроблена на початку 1970х років в Стендфордскому університеті. MYCIN була спроектована для діагностування бактерій, що викликають важкі інфекції, такі як бактеріємія і менінгіт, а також для рекомендації необхідної кількості антибіотиків в залежності від маси тіла пацієнта. Також MYCIN використовувалася для діагностики захворювань згортання крові.

MYCIN оперувала за допомогою досить простої машини виводу, і база знань з приблизно 600 правил. Після запуску, програма ставила користувачеві (лікарю) довгий ряд простих «так / ні» або текстових питань. В результаті, система надавала список підозрюваних бактерій, відсортований за ймовірністю, надавала список питань і правил, які привели її до саме такого ранжування діагнозів, а також рекомендувала курс лікування.

Незважаючи на успіх MYCIN, вона викликала дебати з приводу правомірності її виводів. Дослідження, проведені в Stanford Medical School, виявили, що MYCIN пропонує прийнятну терапію приблизно у 69% випадків, що краще, ніж у експертів з інфекційних хвороб, яких оцінювали за тими ж критеріями. Фактично, MYCIN ніколи не використовувалася на практиці. І не через низьку її ефективність. Деякі дослідники піднімали етичні та правові питання, пов'язані з використанням комп'ютерів в медицині - якщо програма дає неправильний прогноз або пропонує неправильне лікування, хто має відповідати за це? Тим не менше, найбільшою проблемою і справжньою причиною, чому MYCIN не використовується у повсякденній практиці, був стан технологій. У наш час, подібна система була б інтегрована з системою медичних записів, отримувала б відповіді на свої запитання з бази даних про пацієнтів, і була б значно менш залежна від введення інформації лікарем. У 1970-х, сеанс роботи з MYCIN міг легко зайняти 30 хвилин і більше - що становить неприпустимі втрати часу.

Головними труднощами, з якою зіткнулися по час розробки MYCIN і наступних експертних систем, було «витяг» знань з досвіду людей-експертів для формування бази правил. Зараз даними питаннями займається інженерія знань.

Розпізнавання мовлення

Перший пристрій для розпізнавання мовлення з'явилося в 1952 році, воно могло розпізнавати вимовлені людиною цифри. Комерційні програми з розпізнавання голосу з'явилися на початку 90 років. Зазвичай їх використовують люди, які через травми рук не в змозі набирати велику кількість тексту. Наприклад, Dragon NaturallySpeaking, Voice Navigator. Збільшення обчислювальних потужностей мобільних пристроїв дозволило і для них створити програми з функцією розпізнавання мови. Серед таких програм варто відзначити Microsoft Voice Command. Інтелектуальні мовні рішення, що дозволяють автоматично синтезувати і розпізнавати людську мову, є наступним етапом розвитку інтерактивних голосових систем (IVR). Останнім часом у телефонних інтерактивних програмах все частіше використовують системи автоматичного розпізнавання і синтезу мови. При цьому системи розпізнавання є незалежними від дикторів, тобто розпізнають голос будь-якої людини. Наступним кроком технологій розпізнавання мовлення можна вважати розвиток так званих Silent Speech Interfaces (SSI) (Інтерфейсів безмовного Доступу). Ці системи обробки мовлення базуються на одержанні й обробці мовних сигналів на ранній стадії артикулювання. Даний етап розвитку розпізнавання мовлення викликаний двома істотними недоліками сучасних систем розпізнавання: надмірна чутливість до шумів, а також на необхідності чіткої і ясної мови при зверненні до системи розпізнавання. Підхід, заснований на SSI, полягає в тому, щоб використовувати нові сенсори, які не піддаються впливу шумів як доповнення до оброблених акустичним сигналами.


Класифікація систем розпізнавання мовлення

 

За якостями

За роміром словника


Диктозалежні

Дикто незалежні

Обмежений темою набір слів

Словник великого розміру


За типом структурної одиниці


Аллофон

Фонема

Дифон, трифон

Слово, фраза


За типом мовлення

За метою

Ізольовані слова

Цілісне мовлення

Командні системи

Системи диктування

Системи розпізнавання

За механізмом функціонування


Найпростіші детектори

Експертні системи

Вірогіднісно-мережеві системи

Зворотні задачі



Також існує безліч менш глобальних, але безперечно цікавих і оригінальних винаходів. Таких як, наприклад в той час як американські вчені минулого покоління безуспішно намагалися побудувати комп'ютер, подібний мозку, японський вчений створив такий комп'ютер, використовуючи реальні нервові клітини, змішані з електронними пристроями, в спробі виготовити на половину штучну нейронну мережу. Він успішно поєднав клітини з напівпровідниковю сумішшю індію та окису олова і виявив, що при дуже слабкій електричній стимуляції органічні клітини реагують керованим зростанням. Занадто рано думати про штучний мозкок, але подібні пристрої могли б виступити в ролі інтерфейсу між нервовою системою і такими протезами, як штучні очі.


(Малюнок ілюструє ріст клітин при малому електричному стимулюванні)


Також одним з популярних нині напрямків є робототехніка. На даний момент існує велика кількість видів роботів. Від звичайних маніпуляторів до таких, для створення яких використовується штучний інтелект. Найближчим до нас прикладом такого «розумного» роботу може бути Sam. Він був створений фірмою Samsung на базі нетбука і запущений до найбільших вузів України. Мета цього – привернення уваги молоді до передових інформаційних технологій.

Під час турне робот має спілкуватися зі студентами, встановлюючи при цьому справжній живий діалог. Щоб зав'язати спілкування, SAM має під'їжджати до студентів і, наприклад, питати, як потрапити в деканат, бібліотеки або кабінет ректора. Його співрозмовники, у свою чергу, можуть вводити свої питання в чат-інтерфейсі на клавіатурі нетбука Samsung і отримувати відповіді. Причому SAM може не просто виводити відповіді на екран нетбука в вигляді тексту, але і озвучувати їх.

Турне робота охопить усі куточки країни - від Львова до Донецька і від Києва до Одеси.». 12 травня робот відвідав ряд корпусів Київського національного університету ім. Т. Шевченка. «SAM уособлює симбіоз реального та віртуального спілкування, звичний для активних користувачів соціальних мереж.», - зазначив Костянтин Череповський, PR-менеджер компанії« Samsung Electronics Україна». На власному досвіді спілкування з даним представником сучасної «інтелектуальної» теми я можу сказати, що він має досить дружній інтерфейс. Зображення очей на екрані, що рухаються в момент, коли комп’ютер обробляє відповідь, дещо посилює враження живого спілкування. Також SAM підтримує відносно живий і інтнлнктуальних діалог, за допомогою вбудованої веб камери може розпізнавати зображення (наприклад наявність окулярів на обличчі). Одним з помічених мною недоліків є затримка з відповіддю. Іноді обробка її вимагає досить великого часу. Також відчуття «живого діалогу», який постульований компанією виробником, дещо знижується через необхідність вводити відповіді з клавіатури. Загалом така подія має стати вельми захоплюючим і інформативним досвідом для студентів вузів, в яках SAM побуває.       

Ставлення суспільства

Таке глибоке входження штучного інтелекту в наше повсякденне життя не може не викликати появи різних суджень і точок зору з цього приводу.

Якщо розглядати тенденції, що намітилися серед світових релігій, то загалом вони не заперечують можливості створення штучного інтелекту, а деякі навіть активно підтримують. Цікавою є точки зору послідовників авраамічних релігій. За однією з них мозок, роботу якого намагаються імітувати системи не бере участі в процесі мислення, не є джерелом свідомості і будь-який інший розумової діяльності. Відповідно до іншої, мозок бере участь в процесі мислення, але у вигляді «передавача» інформації від душі. Мозок відповідальний за такі «прості» функції, як безумовні рефлекси, реакція на біль тощо. Обидві позиції, на даний момент, зазвичай не визнаються наукою, так як поняття душа не розглядається сучасною наукою в якості наукової категорії.

Найкраще, на мою думку, сучасне ставлення суспільства до ідеї створення штучного інтелекту відображає мистецтво. Наприклад науково-фантастичні фільми, романи, тощо.

У науково-фантастичній літературі штучний інтелект частіше всього зображується як сила, яка намагається повалити владу людини («Космічна одіссея 2001 року», Скайнет, Colossus, «Матриця», «Той, що біжить по лезу») або обслуговуючий гуманоїд («Двохсотрічна людина», «Зоряні війни»).

Цікаве бачення майбутнього представлено в романі «Вибір за Т'юрингом» письменника-фантаста Гаррі Гаррісона і вченого Марвіна Мінські. Автори міркують на тему втрати людяності в людини, у мозок якого була вживлена ЕОМ, і придбання людяності машиною з штучним інтелектом, в пам'ять якої була скопійована інформація з головного мозку людини. Деякі наукові фантасти, наприклад Вернор Віндж (Grimm’s World, The Witling, A Fire Upon the Deep), також роздумували над наслідками появи штучного інтелекту, яке, мабуть, викличе різкі драматичні зміни в суспільстві. Одні з найбільш глибоких досліджень проблематики штучного інтелекту проявляються у творчості фантаста і філософа Станіслава Лемма, що напсав такі відомі твори як Солярис, Людина з Марса, Кіберіада, Казки роботів, тощо.

Отже, загалом можна підвести підсумок, що загалом людство не довіряє таким складним технологіям і в деякій мірі боїться їх не контрольованості,але разом з тим радо користується досягненнями вчених у цій сфері не задумуючись над цим. Про це можна судити з того, що тема штучного розуму, що захопив світ є досить розповсюдженою і популярною. Але окремі особистості, що схильні глибше іти у своєму пізнанні і розумінні проблеми штучного інтелекту, натикаються на величезну кількість етичних і глибоко філософських проблем, що він підіймає самою можливістю свого існування.


Частина ІІІ. Гностична діяльність штучного інтелекту


Гностичну діяльність машини я розгляну на прикладі комп’ютерного зору і сприймання мови. Зорова модальність – найголовніша для людини, так як машини у пізнанні світу імітують нас, то і в них зорове пізнання лишається одним основних джерел інформації. Проблеми мовлення я торкнулася через те, що це одна з тих сфер, в якій активно бере участь психологія. Існує два способи за якими машина може обробляти інформацію, що надійшла з зовнішнього світу.

Перший подібний до дії простих рефлексів. Тобто з усього каналу інформації витягається частина, що відразу надсилається на відповідні її модальності аферентні структури або спочатку поєднується з іншою інформацією. Машини, що працюють за такою схемою досить швидко реагують на зовнішні подразники і у відповідь певним чином змінюють свою програму дій.

Альтернатива цьому підходу – підхід модельний. Тобто стимули, що надійшли ззовні спочатку конструюють модель зовнішнього світу. При цьому робота починається функції. Що відображає стан світу W на окремі стимули S. Ця функція S = f (W) добре відома і вирішується в області комп’ютерної графіки. Робота ж комп’ютерного бачення прямо протилежна до завдання комп’ютерної графіки, тобто ми повинні обрахувати W через S. Але в цьому і полягає проблема, бо з картини світу ми не в змозі відновити всі аспекти його існування. Інша проблема цього методу полягає у надмірності задач, поставлених перед програмою. Щоб вирахувати функцію f у комп’ютерній графіці для 1 кадру може знадобитися біля кількох годин, а для вирахування оборотної функції – ще більше. До того ж, на відміну від промальовування комп”ютерної графіки, штучному інтелекту для виконання його завдань рідко коли потрібна настільки детальна картина світу.

Формування зображення

Світло, що розсіюється предметами на «сцені» концентрується у процесі зору і утворює двовимірне зображення. Площина, на якій утворюється зображення, покрита фото чутливими елементами, наприклад фоторецепторами, галогенами срібла або елементи з зарядовим зв’язком (Charge-Coupled Device —

CCD). На початкових етапах розпізнання візуальних об’єктів комп’ютер проходить через ряд елементарних функцій, для того, щоб потім перейти до більш складного аналогу зображення. Це відповідає сенсорним процесам і процесам елементарної обробки візуальної інформації у зоровому аналізаторі людини.

Сенсорні процеси

Світло

Програма розпізнавання об’єктів починає з обробки яскравості пікселів отриманого на площині зображення. Яскравість залежить від кількості фотонів, направлених на фото чутливий елемент з деякої точки сцени, де інтенсивність переводиться в відносні одиниці, розмах яких тим більший, чим більше бажане розширення і точність результату. Кількість світла (фотонів) залежить від багатьох факторів, таких як вид відбиваючої поверхні і інші елементи сцени, що також можуть розсіювати світло. Існує кілька видів поверхонь, більшість реальних матеріалів поєднують у собі розсіювальні і поглинаючі характеристики. Саме моделювання таких об’єктів є головною задачею комп’ютерної графіки, метод полягає в імітуванні фізичного джерела світла і подальшого багаторазового відбивання променю.

Колір

Колір у фізичному сенсі програмується комбінацією хвиль деяких частот. Чистими, одно частотними, кольорами є тільки сім, що входять у веселку. Але це не означає, що для створення кольорового зображення необхідно оперувати всіма сімома, експерименти, розпочаті ще Томасом Юнгом доводять, що для створення будь-якого кольору, принаймні такого, що може сприйматися людиною, достатньо оперувати трьома довжинами хвиль: червоний – 700 нм, зелений – 546 нм, синій – 436 нм. Правильність такого підходу підтверджує людська зорова система, що складається з трьох видів колбочок.

Перший етап обробки зображення

Перший етап обробки зображення полягає у підготовці зображення до розпізнавання, тут прибирається шум (згладжування) на зображення і розпізнаються його контурів, сегментація. Ці операції проводяться локально, тобто для окремої групи пікселів, не зважаючи на все зображення, для їх виконання немає потреби у розумінні який саме об’єкт зображено. Саме тому такі початкові операції можуть проводитися паралельно. Операція згладжування проводиться на основі обрахування значення яскравості пікселя на основі значень яскравості його елементів. Як значення яскравості береться середнє значення яскравості сусідніх пік селів, а для визначення кількості таких пік селів, що слід взяти для обрахунку існує спеціальна формула гауса. Наступною операцією є віднаходження країв, тобто ліній розділювачами для областей зі значною різницею в яскравості. Контури зазвичай відповідають важливим об’єктам на сцені. Така операція необхідна для зняття перенасиченості і перевантаження деталями картини, перетворення її у більш абстраговану, узагальнену. Контури відносяться тільки до такої, окремо взятої експозиції і тому не можуть дати визначення об’єктам, що на ній знаходяться. Але вони допомагають в цьому у ході подальшої обробки зображення. Краї, що утворюються не є точними. Деякі окремі частини, що на сцені утворюють одну лінію, не з’єднуються у цілісність на отриманому зображення. Деякі з країв утворені шумом і не несуть смислового навантаження. Це пояснює необхідність проведення попереднього прибирання шуму, бо шумові пік селі створюють додаткові пікові точки, що призводить до виникнення шумових контурів. На малюнку зображено зниження інтенсивності шумових пікових точок х2 і х3 і константність істинної пікової точки х1.


а) Попіксельна діаграма зображення до згладжування


 

б) Попіксельна діаграма після згладжування


Після такої обробки слід об’єднати окремі пік селі країв у власне краї. Для цього користуються допущенням, що будь-які пік селі, що знаходяться поруч і мають однакову орієнтацію складають одну лінію краю.

Так як машинне сприйняття побудоване на реалізації загальних принципів сприйняття людини, то наступною операцією стає та, що призводить до утворення конгруентного образу, адже мозок людини не сприймає навколишній світ як набір точок, а виділяє з нього деякі цілісні об’єкти. Як і мозок людини (мова іде про першоразове сприйняття деякого предмету чи явища, а не послідуюче його сприйняття, де багато залежить від попереднього досвіду і його узагальнення), машина розбиває цілісно сприйняту картину світу на групи. Розбиття проходить на основі врахування особливостей характеристик пікселів, адже можна допустити, що у межах одного об’єкта вони змінюються мало. Але таке розбиття, що базується на елементарних і низькорівневих знаннях про зображення часто може призвести до помилок і хибних результатів. Для уточнення слід використовувати високо рівневі знання про те, які саме предмети можуть зустрітися вданій схемі.

Другий етап обробки інформації, витягання трьохвимірного зображення.

Мета сприйняття і обробки візуальної інформації – взаємодія з оточуючим світом. Сцена навколишнього середовища є тривимірною, а тому для успішної взаємодії з нею машині необхідні знання не про двовимірне зображення, а про тривимірну модель. Для переводу зображення у модель необхідно завершити процес розпізнавання об’єктів, який було розпочато на елементарному рівні. Після цього, витягаючи інформацію як з даної картини, так і з деяких узагальнених відомостей про об’єкт машини, подібно до людини, може побудувати цілісний, конгруентний образ предмету.

Для початку слід завершити процедуру сегментації, розпочату ще на елементарному рівні. Також в розпізнавання образу входить визначення орієнтації і позиції образу відносно суб’єкта сприймання, визначення його форми. Це, власне і є витягненням тривимірної інформації з зображення. Орієнтація і позиція об’єкта є однією з найважливіших елементів інформації, так як дозволяє орієнтуватися у просторі. При зміні положення предмету відносно камери, незмінною лишається лише форма предмету, тобто форма грає роль у зберіганні, деякою мірою, константності упізнавання предмету при зміні його положення у тривимірному просторі. Але найбільш вагомою функцією форми є розпізнавання об’єкту з можливістю його подальшої класифікації.

Тепер постає питання, як же дістати інформацію про третій вимір з початкового зображення. Для цього у людській зоровій системі передбачено багато можливостей, які можна класифікувати за загальним принципом дії: бінокулярні і монокулярні.

Страницы: 1, 2, 3, 4, 5



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты