Системы цифрового видеонаблюдения при организации охранных структур на особо охраняемых объектах

Толщина рабочей части приборов с зарядовой связью составляет единицы микрон. Изготавливаются они, как правило, на основе очень тонких полупроводниковых плёнок, выращенных на сравнительно толстом основании – подложке.

Электроды ПЗС-матриц

Электроды ПЗС в течение некоторого времени после изобретения чаще всего изготавливались в одном слое металла. Слой алюминия толщиной около 1 мкм наносили на прибор испарением. Затем путем фотолитографии формировали электроды. Наиболее критичным этапом в технологическом цикле изготовления одноуровневой структуры этого типа является вытравливание межэлектродных зазоров. Для обеспечения хорошего переноса зарядовых пакетов надо, чтобы потенциальные ямы соседних электродов перекрывались. Глубина потенциальной ямы зависит от степени легирования кремния и величины приложенного к электроду потенциала. Типичные значения — единицы микрон. Отсюда следует, что межэлектродные зазоры не должны быть больше единиц микрон. Суммарная длина этих узких зазоров в больших приборах весьма велика.

Для слаболегированного материала подложки (концентрация атомов акцептора около 1015 1/см3, толщина окисла 0.1 мкм и умеренный размах тактовых импульсов порядка 10 В) обедненный слой проникает в кремний на глубину примерно 1 мкм. Вспомним, что в каждом кубическом сантиметре твердого вещества содержится примерно 1022 атомов. Концентрация 1015атомов примеси в 1 см3 соответствует 1 атому примеси на 10 миллионов атомов Si.

Понятно, что любое случайное замыкание соседних электродов, произошедшее на одной из операций технологического цикла, полностью выведет прибор из строя. Последующее развитие ПЗС-технологии было направлено на создание структур, свободных от недостатков первых технологий и работающих с более простыми управляющими напряжениями.

Синхронизации LINE LOCK

Этот вариант синхронизации может быть выполнен только с камерами, питающимися переменным током, так как в этом случае синхронизация всех камер осуществляется от питающего напряжения. Это возможно только в том случае, если питание камер происходит от одного источника переменного тока. Поэтому, пока ток в сети синфазный, синхронизация системы будет обеспечена. Если же разные камеры подключены к различным фазам, возникает необходимость их согласования по питанию и настройке фазы для каждой камеры в отдельности. Существуют специальные устройства фазирования / синхронизации для проведения работ по настройке и синхронизации камер в режиме line lock.

Внешняя синхронизация

Такой вариант синхронизации предполагает использование внешнего опорного источника сигнала. Затем этот сигнал распределяется на каждую камеру посредством специального коаксиального кабеля. Опорный сигнал может быть сформирован генератором синхросигналов. Также в качестве опорного сигнала может быть использован сигнал с видеовыхода одной из камер. Такие варианты предполагают применение дополнительных соединений и кабелей, однако, являются единственными способами осуществления синхронизации для камер с питанием постоянного тока, которые не могут быть синхронизированы по питанию (Line Lock).

Автоматический электронный затвор

Автоматический электронный затвор обеспечивает компенсацию изменения уровня освещенности и постоянную среднюю яркость изображения. Это достигается за счет изменения времени накопления фотозаряда и, как следствие, амплитуды видеосигнала. Скорость переключения затвора (время накопления) может достигать до 1/100000 секунды.

Автодиафрагма

В течение суток освещенность на контролируемом объекте, как правило, претерпевает существенные изменения. Для поддержания на постоянном уровне количества света на матрице используют встроенный в камеру автоматический электронный затвор или объектив с автодиафрагмой.

Объективы с автоматической диафрагмой поддерживают освещенность матрицы на постоянном уровне, изменяя величину относительного отверстия. Диафрагма объектива, подобно зрачку человеческого глаза, при высокой освещенности сужается, пропуская меньше света, а при низкой освещенности расширяется. Это позволяет получить сигнал от видеокамеры с хорошей контрастностью, без засветки или затемнения. В системах наружного наблюдения рекомендуется использовать объективы с автоматической диафрагмой.

Фокусное расстояние

Фокусное расстояние объектива указывается в миллиметрах и при прочих равных условиях определяет угол зрения. Более широкий угол обеспечивается меньшим фокусным расстоянием. И, наоборот — чем фокусное расстояние больше, тем меньше угол зрения объектива. Нормальный же угол зрения ТВ камеры эквивалентен, углу зрения человека, при этом объектив имеет фокусное расстояние, пропорциональное размеру диагонали матрицы ПЗС.

Исходя из выше сказанного, объективы принято делить на нормальные, короткофокусные (широкоугольные), длиннофокусные (телеобъективы).

Объективы, фокусное расстояние которых может изменяться более чем в 6 раз, называются ZOOM–объективами (объективами с трансфокатором). Данный класс объективов применяется при необходимости детального просмотра объекта, удаленного от камеры. Например, при использовании ZOOM–объектива с десятикратным увеличением, объект, находящийся на расстоянии 100 м, будет наблюдаться как объект, удаленный на расстоянии 10 м. Наиболее часто используются ZOOM–объективы, оборудованные электроприводами для управления диафрагмой, фокусировкой и увеличением (motorized zoom). Управление камерой, оборудованной данным объективом, оператор может осуществлять с удаленного поста.

Относительное отверстие

Обычно объектив имеет два значения относительного отверстия (1:F) или апертуры.

F минимально - полностью открытая диафрагма.

F максимально - диафрагма закрыта.

Значение F влияет на выходное изображение. Малое F означает, что объектив пропускает больше света, соответственно, камера лучше работает в темное время суток.

Формат матрицы

Важный параметр ТВ камеры - разрешение. Этот параметр определяет возможности камеры по воспроизведению мелких деталей изображения: чем выше разрешение, тем больше детальность, информативность картинки. Разрешение измеряется в телевизионных линиях (ТВЛ) и зависит не только от числа пикселей в матрице, но и от параметров электронной схемы камеры. В большинстве случаев разрешение 380-400 ТВЛ вполне достаточно для наблюдения. Существуют камеры, имеющие более высокое разрешение - 560-570 ТВЛ. Такие камеры позволяют четко видеть мелкие детали изображения (номера машин, лица людей и т.д.). Разрешение цветных камер несколько хуже, чем разрешение черно-белых: 300 - 350 ТВЛ. Существуют цветные камеры более высокого разрешения — 460 ТВЛ.

Разрешение определяется, как количество переходов (в видимой части растра) от черного к белому или обратно, которое может быть передано камерой. Поэтому единица измерения разрешения называется телевизионной линией (ТВЛ). Разрешение по вертикали у всех камер стандарта CCIR (кроме камер совсем уж плохого качества) одинаково, ибо ограничено телевизионным стандартом - 625 строк телевизионной развертки. На разрешение камеры влияют два фактора: количество горизонтальных элементов матрицы и полоса частот видеосигнала, формируемого камерой. Принято считать, что надежно передается количество линий, не превышающее 3/4 от числа ячеек. То есть камера с 520 элементами имеет разрешение 390 ТВЛ. В настоящее время такой подход практически закрепился в стандартах.

Для передачи сигнала 390 ТВЛ необходима полоса частот 3,75МГц, но полоса пропускания усилителей камеры обычно значительно (в 1,5-2 раза) превосходит необходимую. Так что разрешение ограничивается именно дискретностью структуры ПЗС – матрицы. Разрешение системы в целом определяется тем компонентом, который имеет самое низкое разрешение, т. е., если камера имеет разрешение 430 линий, а монитор — 200, то изображение на экране будет воспроизведено с разрешением лишь в 200 линий. Разрешение может меняться при различных условиях освещенности, при низкой освещенности оно обычно снижается.

Чувствительность

Чувствительность - еще один важный параметр ТВ камеры. Этот параметр определяет качество работы камеры при низкой освещенности. Чаще всего под чувствительностью понимают минимальную освещенность на объекте, при которой можно различить переход от черного к белому, но иногда подразумевают минимальную освещенность на матрице. С теоретической точки зрения правильнее было бы указывать освещенность на матрице, т. к. в этом случае не нужно оговаривать характеристики используемого объектива. Но пользователю при подборе камеры удобней работать с освещенностью на объекте, которую он заранее знает (или может измерить).

Формула, связывающая освещенность на объекте и на матрице

Iimаge=Iscene*R/(n*F2) , где
Iimаge - освещенность на ПЗС - матрице,
Iscene - освещенность на объекте,
R - коэффициент отражения объекта

F - светосила объектива.

Примерные значения коэффициентов отражения различных объектов.

Объект

Коэффициент отражения (%)

Снег

90

белая краска

75-90

Стекло

70

автостоянка с автомобилями

40

Кирпич

35

Бетон

25-30

трава, деревья

20

человеческое лицо

15-25

Единица измерения чувствительности - люкс. Значения минимальной освещенности на матрице и на объекте отличаются, как правило, больше, чем в 10 раз. Например, если указано, что минимальная освещенность на матрице равна 0,01 люкс, то это значит, что при объективе F1.4 минимальная освещенность объекта - 0,1 люкс.

По сравнению с человеческим глазом чувствительность монохромных ТВ камер существенно сдвинута в инфракрасную область. Это обстоятельство позволяет при недостаточной освещенности использовать специальные инфракрасные прожекторы. Инфракрасное излучение не видно человеческому глазу, но прекрасно фиксируется ТВ камерами на ПЗС.

Для цветных ТВ камер характерны значительно меньшая чувствительность по сравнению с монохромными и отсутствие чувствительности в инфракрасной области спектра. Чувствительность большинства современных монохромных ТВ камер - порядка 0.01 - 1 люкс (при F1.2). Наиболее чувствительные камеры могут использоваться для ночных наблюдений без ИК - подсветки. Для эффективной работы таких камер вполне достаточно лунного света.





Освещенность объектов.

На улице: безоблачный, солнечный день

100 000 люкс

солнечный день, с легкими облаками

70 000 люкс

пасмурный день

20 000 люкс

раннее утро

500 люкс

сумерки

4 люкс

ясная ночь, полная луна

0.2 люкс

ясная ночь, неполная луна

0.02 люкс

ночь, луна в облаках

0.007 люкс

ясная, безлунная ночь

0.001 люкс

безлунная ночь с легкими облаками

0.0007 люкс

темная, облачная ночь

0.00005 люкс

в помещении без окон

100 - 200 люкс

хорошо освещенные помещения, офисы

200 - 1000 люкс

Особого упоминания заслуживают сверхвысокочувствительные ТВ камеры, фактически, являющие собой комбинацию обычной ТВ камеры и прибора ночного видения (например, электронно-оптического преобразователя - ЭОП). Подобные камеры обладают не только чувствительностью во 100 - 10 000 раз выше обычных, но и уникальной капризностью: среднее время наработки на отказ составляет около одного года, причем камеры не следует включать днем. Рекомендуется даже закрывать их объектив, чтобы предохранить от выгорания катод ЭОП. Во время работы камеру необходимо регулярно чуть-чуть поворачивать, чтобы избежать "прожога " изображения. Для этого применяют специальные двух координатные устройства управления, которые постоянно перемещаются вверх- вниз, влево- вправо. Но если необходимо полностью скрытое видеонаблюдение, которое злоумышленник, экипированный ночными прицелами, не смог бы обнаружить, альтернативы ТВ камерам с ЭОП нет.

Отношение сигнал/шум

С чувствительностью тесно связан параметр "отношение сигнал / шум" (S/N = signal to noise). Эта величина измеряется в децибелах.

S/N =20*log (видеосигнал/шум)

Например, сигнал/шум, равный 60 дБ, означает, что амплитуда сигнала в 1000 раз больше шума. При параметрах сигнал/шум 50 дБ и более на мониторе будет видна чистая картинка без видимых признаков шума. При 40 дБ иногда заметны мелькающие точки, а при 30 дБ - "снег" по всему экрану, 20 дБ - изображение практически неприемлемо.

Часто чувствительность камеры указывают для "приемлемого сигнала", под которым подразумевается такой сигнал, при котором отношение сигнал/шум составляет 24 дБ это предельное значение отношения сигнал / шум, при котором изображение еще можно записывать на видеопленку и надеяться при воспроизведении что-то увидеть.

 Другой способ определения "приемлемого" сигнала – шкала IRE (Institute of Rаdio Engineers). Полный видеосигнал 0,7 вольта принимается за 100 единиц IRE. "Приемлемым" считается сигнал около 30 IRE. Некоторые производители, например BURLE, “приемлемым” указывают сигнал 25 IRE, другие - 50 IRE.

Наибольшей чувствительностью среди ПЗС - матриц массового применения обладают Hyper-CAD матрицы Sony, имеющие микролинзу на каждой светочувствительной ячейке. Именно они применяются в большинстве ТВ камер высокого качества.

Среды передачи телевизионных сигналов

После считывания заряда с ПЗС матрицы и преобразования его в электрический сигнал, он должен пройти путь от видеокамеры до видеосервера. Путь этот может быть не близким, так как камеры могут располагаться за несколько километров от места концентрации видеоизображения. Также надо учитывать и электромагнитные помехи, которые также оказывают действие на видеосигнал, поэтому следует внимательно подойти к выбору среды передачи данных от видеокамеры к видеосерверу.

Каждый тип имеет свои ограничения по применению, что необходимо учитывать при проектировании схемы размещения компонентов системы. Максимально возможные расстояния между видеосервером и видеокамерами в зависимости от способа передачи видеосигнала можно посмотреть в таблице.








Тип кабеля

Длина линий связи без усилителя

Дополнительное оборудование

Примечание

Коаксиальный кабель

До 300 м

Не используется

Возможность возникновения токовых петель.

Чувствительность к различным наводкам.

Малая длина линий связи

Витая пара

До 1800 м

Передатчики и приемники сигнала по витой паре.

Отсутствие токовых петель.

Высокая защищенность от помех

Стоимость кабеля и монтажа ниже чем при использовании коаксиального кабеля

Оптоволокно многомодовое

одномодовое

До 4 км многомодовое

До 40 км одномодовое

Передатчики и приемники сигнала по оптоволокну.

Отсутствие токовых петель.

Максимальная защищенность от наводок

Из всех перечисленных типов кабелей оптоволокно наилучшим образом подходит для использования в системах цифрового видеонаблюдения как при передаче сигнала от камер к концентратору, так и при объединении видеосерверов, рабочих мест операторов видеонаблюдения и серверов резервного копирования в единую компьютерную сеть. Поэтому стоит отдельно остановиться на достоинствах оптоволоконного кабеля, принципиальном устройстве оптоволокна и видах оптоволокна.

Преимущества волоконной оптики как передающей среды

1.      Широкая полоса пропускания. Волоконная оптика теоретически может работать в диапазоне до 1 ТГц, однако используемый сейчас диапазон еще далек от этого предела, и коммуникационные возможности волоконной оптики только начинают развиваться, тогда как медный кабель уже исчерпал свои возможности.

2.      Низкие потери. Маленькое уменьшение амплитуды сигнала при передаче больших пакетов информации на большие расстояния.

3.      Нечувствительность к электромагнитным полям.

4.      Малый вес.

5.      Малый размер.

6.      Безопасность.

7.      Секретность.

Принципиальное устройство волокна

Оптическое волокно имеет два концентрических слоя: ядро (сердцевина) и оптическая оболочка. Внутренне ядро предназначено для переноса света. Окружающая его оптическая оболочка имеет отличный от ядра показатель преломления и обеспечивает полное внутренне отражение света в ядро.

Волокна имеют дополнительную защитную оболочку вокруг оптической оболочки. Защитная оболочка, представляющая собой один или несколько слоев полимера, предохраняет ядро и оптическую оболочку от воздействий, которые могут повлиять на их оптические свойства. Защитная оболочка не влияет на процесс распространения света по волокну, а всего лишь предохраняет от ударов.

Свет заводится внутрь волокна под углом, большим критического, к границе ядро/оптическая оболочка и испытывает полное внутреннее отражение на этой границе. Поскольку углы падения и отражения совпадают, то свет и в дальнейшем будет отражаться в границу. Таким образом, луч света будет двигаться зигзагообразно вдоль волокна.

Свет, падающий на границу под углом меньшим критического, будет проникать в оптическую оболочку и затухать по мере распространения в ней. Оптическая оболочка не предназначена для переноса света, и свет быстро затухает.

Внутренне отражение служит основой для распространения света вдоль обычного оптического волокна.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты