: Жизнь и деятельность Роберта Милликена

: Жизнь и деятельность Роберта Милликена

Уче­ный по­не­во­ле

В кон­це вес­ны 1889 го­да про­фес­сор Джон Ф. Пек, ко­то­рый чи­тал лек­ции

по гре­че­ско­му язы­ку в не­боль­шом кол­лед­же Обер­лин (штат Огайо),

об­ра­тил­ся к од­но­му из сту­ден­тов, изу­чав­ших клас­си­че­ские язы­ки и

ли­те­ра­ту­ру, с прось­бой по­ду­чить фи­зи­ку, что­бы на бу­ду­щий год

пре­по­да­вать эле­мен­тар­ный курс этой нау­ки.

- Но я не знаю фи­зи­ки.

- Ка­ж­дый, кто хо­ро­шо ус­ваи­ва­ет гре­че­ский, мо­жет пре­по­да­вать

фи­зи­ку.

- Хо­ро­шо, - ска­зал сту­дент, - но за все по­след­ст­вия от­ве­чае­те вы.

По­след­ст­вия­ми ока­за­лись два наи­бо­лее фун­даментальных

ис­сле­до­ва­ния в об­лас­ти фи­зи­ки XX ве­ка. Мил­ли­кен от­ве­тил

про­фес­со­ру согла­сием, так как ну­ж­дал­ся в день­гах. К изу­че­нию

клас­си­ки он не вер­нул­ся.

Ро­берт Мил­ли­кен ро­дил­ся 22 мар­та 1868 го­да в шта­те Ил­ли­нойс в

се­мье свя­щен­ни­ка. Его детст­во про­шло в не­боль­шом, сто­яв­шем на

бе­ре­гу ре­ки, го­род­ке Ма­к­во­ке­та (штат Ай­о­ва). “Мой отец и мать

вос­пи­та­ли шес­те­рых де­тей - трех де­во­чек и трех маль­чи­ков, жи­вя на

жа­ло­ва­нье свя­щен­ни­ка не­боль­шо­го го­род­ка в ты­ся­чу три­ста

дол­ла­ров в год, - рас­ска­зы­вал он. - Мы но­си­ли кос­тю­мы и пла­тья из

си­ней бу­маж­ной тка­ни и хо­ди­ли бо­си­ком, на­чи­ная с окон­ча­ния шко­лы

в мае и до на­ча­ла за­ня­тий в сен­тяб­ре. Зи­мой мы, маль­чи­ки,

рас­пи­ли­ва­ли еже­днев­но де­сять че­ты­рех­фу­то­вых бре­вен. Так

про­дол­жа­лось до тех пор, по­ка мы не на­пи­ли­ва­ли де­сять кор­дов (1

корд = 3,63 ку­бо­мет­ра) дров. Во вре­мя ка­ни­кул по ут­рам мы долж­ны

бы­ли ра­бо­тать в са­ду, но по­сле обе­да у нас бы­ло сво­бод­ное вре­мя для

игр”.

Де­ти пла­ва­ли в ре­ке, иг­ра­ли в бейс­бол, два раза в день дои­ли ко­ров,

вста­ва­ли в три ча­са но­чи, что­бы встре­тить бро­дя­чую цирко­вую труп­пу,

вы­учи­лись кру­тить­ся на самодель­ных па­рал­лель­ных брусь­ях и ни­ко­гда

не слы­ха­ли о том, что взрос­лый че­ло­век мо­жет за­ра­бо­тать се­бе на

жизнь, про­во­дя вре­мя в ла­бо­ра­то­рии и ра­бо­тая над ка­кой-то

фи­зи­кой. Для них сло­во “фи­зи­ка” свя­зы­ва­лось с по­ня­ти­ем о

сла­би­тель­ном (разг. physic - сла­би­тель­ное).

Курс фи­зи­ки в сред­ней шко­ле Ма­к­во­ке­ты вел сам ди­рек­тор, ко­то­рый в

лет­ние ме­ся­цы за­нимался глав­ным об­ра­зом по­ис­ка­ми под­зем­ных вод

при по­мо­щи раз­дво­ен­но­го оре­хо­во­го пру­ти­ка и уж во вся­ком слу­чае

не очень-то ве­рил во всю эту ерун­ду, на­пе­ча­тан­ную в учеб­ни­ке: “Как

это мож­но из волн сде­лать звук? Ерун­да, маль­чики, это все ерун­да?” Но

за­то учи­те­ля ал­геб­ры Мил­ли­кен с ува­же­ни­ем вспо­ми­нал всю жизнь.

Ко­гда ему ис­пол­ни­лось во­сем­на­дцать, он по­ступил в Обер­лин­ский

кол­ледж - брат его ба­бушки был од­ним из ос­но­ва­те­лей это­го учеб­но­го

за­ве­де­ния. На вто­ром кур­се кол­лед­жа он вновь про­слу­шал курс лек­ций

по фи­зи­ке, ко­то­рые бы­ли ни­чуть не ве­се­лее тех, что ему чи­та­ли в

сред­ней шко­ле. На­вы­ки в спор­тив­ных иг­рах и ат­ле­ти­ке,

при­об­ре­тен­ные в дет­ст­ве на зад­них дво­рах, по­могли ему по­лу­чить

ме­сто пре­по­да­ва­те­ля гим­настики, а до­ход от пре­по­да­ва­ния фи­зи­ки

в сред­ней шко­ле еще бо­лее ук­ре­пил его финан­совое по­ло­же­ние.

Мил­ли­кен, на­до ска­зать, доб­ро­со­ве­ст­но от­носился к сво­им

пре­по­да­ва­тель­ским обя­зан­но­стям. Что­бы ид­ти впе­ре­ди сво­их

уче­ни­ков, он изу­чал все учеб­ни­ки, ка­кие толь­ко мог дос­тать. В то

вре­мя в аме­ри­кан­ских кол­лед­жах бы­ло все­го две кни­ги по фи­зи­ке -

пе­ре­ве­ден­ные с фран­цуз­ско­го язы­ка ра­бо­ты Га­но и Де­ша­не­ля.

При та­ких об­стоя­тель­ст­вах Мил­ли­кен дей­ствительно хо­ро­шо нау­чил

пред­мет.

По окон­ча­нии кол­лед­жа в 1891 го­ду Мил­ли­кен про­дол­жал пре­по­да­вать

фи­зи­ку в Обер­ли­не, по­лу­чая не­боль­шое жа­ло­ва­нье. Он был вынуж­ден

за­ни­мать­ся этим, ибо, как го­во­рил он сам, “в тот год де­прес­сии

ни­ка­кой ва­кан­сии не бы­ло”. Од­на­ко пре­по­да­ва­те­ли Обер­ли­на

зна­чи­тель­но серь­ез­нее от­но­си­лись к ро­ли Мил­ли­ке­на в нау­ке, чем

он сам, и без его ве­до­ма на­пра­ви­ли его до­кументы в Ко­лум­бий­ский

уни­вер­си­тет. Ему бы­ла пред­ло­же­на сти­пен­дия, и Мил­ли­кен по­сту­пил

в уни­вер­си­тет, ибо дру­гой воз­мож­но­сти по­лу­чать ре­гу­ляр­но 700

дол­ла­ров у не­го не бы­ло. В Колум­бийском уни­вер­си­те­те он впер­вые

встре­тил­ся с людь­ми, глу­бо­ко ин­те­ре­со­вав­ши­ми­ся фи­зи­кой,

Мил­ли­кен ре­шил по­сле­до­вать их при­ме­ру и по­пытаться стать на­стоя­щим

уче­ным, не­смот­ря на то, что уже мно­го лет тер­зал­ся со­мне­ния­ми

от­но­си­тель­но сво­их спо­соб­но­стей.

В 1893 го­ду нау­ка в Аме­ри­ке бы­ла отста­лой. Толь­ко лю­ди, по­лу­чив­шие

об­ра­зо­ва­ние в Ев­ро­пе, хо­ро­шо пред­став­ля­ли се­бе, как имен­но

сле­ду­ет вес­ти на­уч­но-ис­сле­до­ва­тель­скую ра­бо­ту. На фи­зи­че­ском

фа­куль­те­те Ко­лум­бий­ско­го уни­верситета был толь­ко один та­кой

че­ло­век - про­фессор Майкл Пью­пин, по­лу­чив­ший об­ра­зо­ва­ние в

Кем­брид­же. Мил­ли­кен го­во­рил: “Слу­шая курс оп­ти­ки, ко­то­рый чи­тал

док­тор Пью­пин, я все боль­ше удив­лял­ся. Впер­вые в жиз­ни я встре­тил

че­ло­ве­ка, ко­то­рый на­столь­ко хо­ро­шо знал анали­тические про­цес­сы,

что, не го­то­вясь к за­ня­ти­ям, при­хо­дил еже­днев­но в ау­ди­то­рию и

из­ла­гал свои мыс­ли в ви­де урав­не­ний. Я ре­шил по­пы­тать­ся нау­чить­ся

де­лать то же са­мое”. Ко­гда срок сти­пен­дии, на­зна­чен­ный Мил­ли­ке­ну

для изу­че­ния фи­зи­ки, ис­тек, она не бы­ла во­зоб­нов­ле­на: Пью­пин

пред­по­чел Мил­ли­ке­ну дру­го­го кан­ди­да­та.

Ко­гда до Пью­пи­на дош­ло, что Мил­ли­кен ос­тал­ся без вся­ких средств, он

заинте­ресовался им все­рь­ез. На сле­дую­щий год имен­но по на­стоя­нию

Пью­пи­на Мил­ли­кен ре­шил по­ехать учить­ся в Гер­ма­нию. Мил­ли­ке­ну

при­шлось приз­наться, что у не­го нет средств, и Пью­пин дал ему взай­мы

не­об­хо­ди­мую сум­му. Пью­пин хо­тел по­да­рить ему эти день­ги, но

Мил­ли­кен не согла­сился и вру­чил Пью­пи­ну рас­пис­ку в по­лу­че­нии

де­нег.

Пе­ред са­мым отъ­ез­дом Мил­ли­кен встре­тил­ся еще с од­ним че­ло­ве­ком,

сыг­рав­шим значи­тельную роль в его жиз­ни. Во вре­мя лет­ней сес­сии

Мил­ли­кен по­бы­вал в не­дав­но от­кры­том Чи­каг­ском уни­вер­си­те­те, где

по­зна­ко­мил­ся с А. А. Май­кель­со­ном. Ни один че­ло­век ни­ко­гда не

про­из­во­дил на мо­ло­до­го уче­но­го столь силь­ного впе­чат­ле­ния. Здесь

же он в 1895 году по­лу­чил док­тор­скую сте­пень.

Мил­ли­кен на­хо­дил­ся в Ев­ро­пе (ра­бо­та­ет в Бер­лин­ском и

Гет­тин­ген­ском уни­вер­си­те­тах), ко­гда за се­рией экс­пе­ри­мен­таль­ных

ра­бот по­сле­до­вал гран­диозный взрыв всех клас­си­че­ских тео­рий. В 1895

и 1896 го­дах про­зву­ча­ли в нау­ке име­на Бек­ке­ре­ля, Рент­ге­на, Кю­ри и

Том­со­на.

Бро­же­ние еще про­дол­жа­лось, ко­гда ле­том 1896 го­да Милли­кен по­лу­чил

от А. А. Май­кель­со­на те­ле­грам­му с пред­ло­же­ни­ем за­нять ме­сто

ас­си­стен­та в Чи­каг­ском уни­вер­си­те­те. Мил­ли­ке­ну бы­ло то­гда 28

лет. “Я от­дал мою оде­ж­ду вме­сте с че­мо­да­ном в за­клад ка­пи­та­ну

од­но­го из су­дов Аме­ри­кан­ской транс­порт­ной ли­нии, за­верив

ком­па­нию, что я вы­пла­чу ка­пи­та­ну стои­мость про­ез­да в Нью-Йор­ке и

толь­ко по­сле это­го при­ду за ве­ща­ми”.

Сле­дую­щие две­на­дцать лет Мил­ли­кен про­вел в об­ста­нов­ке не­уто­ми­мой

на­уч­ной активно­сти, ха­рак­тер­ной для Чи­ка­го в на­ча­ле ве­ка.

Чи­каг­ский уни­вер­си­тет со­брал в сво­их сте­нах мо­ло­дых лю­дей,

ко­то­рых в ско­ром вре­ме­ни ожи­да­ла ши­ро­кая из­вест­ность: ас­тро­но­ма

Джорд­жа Гей­ля, ис­то­ри­ка Джейм­са Бре­сте­да, эко­но­ми­ста Сте­фе­на

Ли­ко­на, Ро­бер­та Ло­вет­та и мно­гих, мно­гих дру­гих. В од­ном пан­сио­не

с Мил­ли­ке­ном про­жи­ва­ли двое юно­шей: Тор­стейн Веб­лен и Га­рольд Икс.

Пер­вые го­ды, про­ве­ден­ные в Чи­ка­го, Мил­ликен по­свя­тил на­пи­са­нию

удо­бо­ва­ри­мых аме­ри­кан­ских учеб­ни­ков по фи­зи­ке и за­бо­там о сво­ей

мо­ло­дой се­мье. Май­кель­сон взва­лил на не­го всю пре­по­да­ва­тель­скую

ра­бо­ту, ко­то­рая не со­от­вет­ст­во­ва­ла нра­ву ста­ри­ка.

В го­ды пер­вой ми­ро­вой вой­ны (1914-1918) Мил­ли­кен был заместителем

пред­се­да­те­ля на­цио­наль­но­го ис­сле­до­ва­тель­ско­го со­ве­та

(раз­ра­ба­ты­вал ме­тео­ро­ло­ги­че­ские при­бо­ры для об­на­ру­же­ния

под­вод­ных ло­док).

Мил­ли­кен на­чал серь­ез­но за­ни­мать­ся на­учно-ис­сле­до­ва­тель­ской

ра­бо­той, ко­гда ему бы­ло поч­ти со­рок лет. Про­бле­мы для исследова­ния

обыч­но вы­би­ра­лись им из чис­ла тех, кото­рые так по­тря­си уче­ный мир,

ко­гда он еще был в Ев­ро­пе. Мил­ли­кен. по­не­во­ле став­ший фи­зи­ком,

по­ста­вил два экс­пе­ри­мен­та, ко­то­рые и по­ны­не яв­ля­ют­ся

клас­си­че­ским об­раз­цом изя­ще­ст­ва за­мыс­ла и вы­пол­не­ния. Он

за­слу­жил по­лу­чен­ную им Но­бе­лев­скую пре­мию (в 1923 го­ду).

Та­ин­ст­вен­ное чет­вер­тое со­стоя­ние ма­те­рии

Вспо­ми­ная свою жизнь, Мил­ли­кен го­во­рил, что боль­ше все­го ему

по­вез­ло, ко­гда Пью­пин не взял его сво­им ас­си­стен­том. Ес­ли бы это

про­изош­ло, Мил­ли­кен ни­ко­гда не по­пал бы за гра­ни­цу и не ока­зал­ся

бы в Ев­ро­пе, ко­гда со­временная фи­зи­ка толь­ко на­чи­на­лась по-

на­стоя­ще­му.

4 ян­ва­ря 1896 го­да Виль­гельм Кон­рад фон Рент­ген вы­сту­пил с док­ла­дом

в Вюрц­бур­ге на за­се­да­нии Вюрц­бург­ско­го фи­зи­ко-ма­те­ма­ти­че­ско­го

об­ще­ст­ва, а за­тем по­вто­рил док­лад в Бер­ли­не на еже­год­ной

кон­фе­рен­ции Германско­го фи­зи­че­ско­го об­ще­ст­ва. Его со­об­ще­ние

яви­лось сен­са­ци­ей для двух на­ук: Рент­ген расска­зал об от­кры­тии

со­вер­шен­но но­вой фор­мы ра­диации, по­зво­лив­шей ему

фо­то­гра­фи­ро­вать пред­ме­ты сквозь не­про­зрач­ные твер­дые эк­ра­ны. Он

про­де­мон­ст­ри­ро­вал фо­то­гра­фию час­тей свое­го соб­ст­вен­но­го

жи­во­го ске­ле­та - кос­тей ру­ки.

Для ме­ди­цин­ско­го ми­ра лу­чи Рент­ге­на бы­ли чу­дом, ко­то­рое

сле­до­ва­ло не­мед­лен­но по­ста­вить на служ­бу ди­аг­но­сти­ке. Для ми­ра

фи­зи­ки в тот мо­мент го­раз­до важ­нее бы­ло объ­яс­не­ние яв­ле­ния,

не­же­ли его при­ме­не­ние. По­ис­ки это­го объ­яс­не­ния и яви­лись

впослед­ствии пер­вым прыж­ком в атом­ный и суб­атом­ный мир.

Чу­дес­ные лу­чи, от­кры­тые Рент­ге­ном, име­ли уже по край­ней ме­ре

со­ро­ка­лет­нюю ис­то­рию в ев­ро­пей­ской нау­ке. В 1863 го­ду

фран­цуз­ский фи­зик Мас­сон на­пра­вил элек­три­че­скую ис­кру вы­со­ко­го

на­пря­же­ния на стек­лян­ный со­суд, из ко­то­ро­го был вы­ка­чан поч­ти

весь воз­дух. Со­суд вне­зап­но на­пол­нил­ся яр­ким не­зем­ным пур­пур­ным

све­че­ни­ем.

В 60-е и 70-е го­ды про­шло­го ве­ка Гит­торф я Крукс про­дол­жи­ли

изу­че­ние это­го не­обычного яв­ле­ния. Изо­бре­те­ние со­вер­шен­но­го

ва­ку­ум­но­го на­со­са, по­мог­ше­го Эди­со­ну соз­дать лам­поч­ку

на­ка­ли­ва­ния, да­ло воз­мож­ность Крук­су на­блю­дать та­ин­ст­вен­ное

за­ре­во в ва­кууме при все умень­шаю­щем­ся дав­ле­нии. Ха­рактер све­че­ния

ме­нял­ся при умень­ше­нии дав­ления в со­су­де сна­ча­ла до од­ной со­той, а

по­том и до од­ной ты­сяч­ной ат­мо­сфе­ры. Оно сна­ча­ла ста­ло еще яр­че,

за­тем рас­сы­па­лось на от­дель­ные сгу­ст­ки све­та и, на­ко­нец,

по­ту­ск­не­ло и со­всем ис­чез­ло. Ко­гда в со­су­де соз­да­вал­ся

дос­та­точ­но боль­шой ва­ку­ум, све­че­ние пропада­ло, но за­то стек­лян­ные

стен­ки со­су­да на­чи­на­ли из­лу­чать при­зрач­ный зе­ле­но­ва­тый свет.

Труб­ка Крук­са по фор­ме на­по­ми­на­ла боль­шую гру­шу, на обо­их кон­цах

ко­то­рой он впа­ял ме­тал­ли­че­ские пла­стин­ки. Крукс ус­та­но­вил, что

све­че­ние в труб­ке объ­яс­ня­ет­ся про­хо­ж­де­ни­ем лу­чей че­рез ва­ку­ум

ме­ж­ду дву­мя металли­ческими дис­ка­ми - элек­тро­да­ми, ко­гда

метал­лические пла­стин­ки со­еди­ня­ли с ис­точ­ни­ком вы­сокого

на­пря­же­ния. Лу­чи на­зва­ли ка­тод­ны­ми лу­ча­ми, а со­суд - ка­тод­ной

лу­че­вой труб­кой.

Крукс так­же за­ме­тил, что та­ин­ст­вен­ные лу­чи, по-видимому, име­ют

мас­су и ско­рость. Одна­ко при­ро­ды этих лу­чей он не по­ни­мал и счи­тал

их “чет­вер­тым со­стоя­ни­ем ма­те­рии”, в отли­чие от жид­ко­го,

га­зо­об­раз­но­го и твер­до­го.

В даль­ней­шем ус­та­но­ви­ли, что ка­тод­ные лу­чи име­ют элек­три­че­скую

при­ро­ду, так как маг­нит, под­не­сен­ный к труб­ке, от­кло­нял по­ток

лу­чей. Так же дей­ст­во­вал на них и электри­ческий ток. Дру­гие

ис­сле­до­ва­те­ли до­ка­за­ли, что ка­тод­ные лу­чи мож­но на­пра­вить за

преде­лы труб­ки, ес­ли по­ста­вить на их пу­ти тон­кую пла­стин­ку из

алю­ми­ние­вой фоль­ги. Од­на­ко в воз­ду­хе ка­тод­ные лу­чи

рас­про­стра­ня­лись на очень не­боль­шое рас­стоя­ние.

Не­ко­то­рые фи­зи­ки по­ла­га­ли, что “четвер­тое со­стоя­ние ма­те­рин”

бы­ло не чем иным, как та­ин­ст­вен­ной эк­то­плаз­мой, опи­сан­ной

спирита­ми. На вре­мя рез­ко воз­рос спрос на ду­хов.

Осе­нью 1895 го­да Кон­рад фон Рент­ген про­во­дил опы­ты с труб­кой Крук­са,

плот­но за­вернутой в чер­ную бу­ма­гу, что­бы из­лу­че­ние не вы­рва­лось

на­ру­жу. Со­вер­шен­но слу­чай­но он за­ме­тил, что в тем­ной ком­на­те

“бу­маж­ный эк­ран, про­мы­тый циа­ни­дом пла­ти­ны и ба­рия, яр­ко

за­го­ра­ет­ся и флуо­рес­ци­ру­ет, не­за­ви­си­мо от то­го, об­ра­бо­тан­ная

или же об­рат­ная сторо­на эк­ра­на об­ра­ще­на к раз­ряд­ной труб­ке”.

Бу­маж­ный эк­ран по­ме­щал­ся на рас­стоя­нии поч­ти в шесть фу­тов от

ап­па­ра­та. Рент­ген знал, что ка­тод­ные лу­чи за­став­ля­ют

флуо­рес­ци­ро­вать об­ра­бо­тан­ный этим рас­тво­ром эк­ран, но на та­кое

рас­стоя­ние ка­тод­ные лу­чи ни­ко­гда не про­никали! Он об­на­ру­жил

вско­ре, что все ве­ще­ст­ва в той или иной сте­пе­ни про­ни­цае­мы для этих

та­ин­ст­вен­ных но­вых лу­чей. Толь­ко сви­нец ока­зался не­про­зрач­ным для

них.

Рент­ген за­ме­тил так­же, что лу­чи эти за­свечивали су­хие

фо­то­пла­стин­ки и плен­ку, и это по­зво­ля­ло при­ме­нять луч и для

фо­то­съем­ки. Он до­б­рал­ся и до ис­точ­ни­ка лу­чей. Они возника­ли в том

мес­те на по­верх­но­сти стек­ла, на кото­рое па­да­ли ка­тод­ные лу­чи при

вы­со­ком напря­жении. Рент­ген то­гда зая­вил, что но­вые лу­чи мож­но

по­лу­чить, на­пра­вив ка­тод­ные лу­чи на твер­дое те­ло. Что­бы

под­твер­дить это, он скон­струировал труб­ку, из­лу­чав­шую бо­лее

интен­сивный по­ток но­вых лу­чей, ко­то­рым за неиме­нием луч­ше­го он дал

на­зва­ние “икс - лу­чи” (X - не­из­вест­ное).

Уже че­рез не­сколь­ко ме­ся­цев по­сле со­об­ще­ние Рент­ге­на его труб­ка

на­шла разнообраз­ное при­ме­не­ние в ме­ди­ци­не для об­сле­до­ва­ния

пе­ре­ло­мов, глу­бо­ких ра­не­ний и внут­рен­не­го строе­ния

че­ло­ве­че­ско­го те­ла.

На­уч­ные жур­на­лы ве­ду­щих стран бы­ли за­полнены стать­я­ми фи­зи­ков,

по­вто­ряв­ших опы­ты Рент­ге­на и ка­ж­дый раз по-но­во­му объ­яс­няв­ших

это яв­ле­ние. Сам Рент­ген все еще не по­ни­мал сущ­но­сти сво­его

от­кры­тия и го­во­рил, что это “про­доль­ные виб­ра­ции в эфи­ре”.

От­кры­тие Рент­ге­на за­ста­ви­ло мно­гих фи­зи­ков бо­лее тща­тель­но

ис­сле­до­вать яв­ле­ние флуо­рес­цен­ции.

Ра­дио­ак­тив­ность и фо­то­элек­три­че­ский эф­фект

Ме­сяц спус­тя Ан­ри Бек­ке­рель по­ста­вил опыт, ис­сле­дуя

флуо­рес­ци­рую­щие свой­ст­ва двой­но­го суль­фа­та ура­на и ка­лия. Ко­гда

неко­торые ве­ще­ст­ва, по­сле то­го, как их по­дер­жа­ли на све­ту,

на­чи­на­ли све­тить­ся в тем­но­те, про них го­во­ри­ли, что они

флуо­рес­ци­ру­ют. Бы­ло извест­но мно­же­ст­во та­ких ве­ществ, и од­ним из

них был при­ме­нен­ный Бек­ке­ре­лем уран.

В экс­пе­ри­мен­те Бек­ке­ре­ля ура­но­вая соль сна­ча­ла под­вер­га­лась

дей­ст­вию сол­неч­но­го све­та, а по­том из­ме­ря­лись ее флуо­рес­ци­рую­щие

свой­ст­ва. Как-то ис­пор­ти­лась по­го­да, и Бек­ке­рель от­ло­жил пре­па­рат

в сто­ро­ну на несколь­ко дней. Со­вер­шен­но слу­чай­но соль ока­за­лась в

од­ном ящи­ке сто­ла с гор­кой фо­то­гра­фи­че­ских пла­сти­нок. Вто­рой

слу­чай­но­стью бы­ло то, что Бек­ке­рель ре­шил про­ве­рить фо­то­пла­стин­ки

пе­ред во­зоб­нов­ле­ни­ем опы­та.

Он про­явил пер­вую пла­стин­ку, ле­жав­шую свер­ху, и, к сво­ему

удив­ле­нию, об­на­ру­жил, что она за­све­че­на, при­чем за­све­чен­ное

пят­но име­ло та­кую фор­му, слов­но что-то от­бра­сы­ва­ло при

за­све­чи­ва­нии тень на пла­стин­ку. Ища объ­яс­не­ние, Бек­ке­рель

об­на­ру­жил, что ес­ли рас­сматривать пят­но с не­ко­то­рой до­лей

воображе­ния оно на­чи­на­ет на­по­ми­нать по фор­ме метал­лический диск, в

ко­то­ром хра­ни­лась ура­но­вая соль. Слу­чись это рань­ше, Бек­ке­рель

вы­бро­сил бы пла­стин­ку и за­был про нее. Но шум во­круг икс - лу­чей

за­ста­вил всех фи­зи­ков насторо­житься. Бек­ке­рель ре­шил ра­зо­брать­ся в

про­исходящем до кон­ца.

Он вновь вы­ста­вил ура­но­вую соль на сол­нечный свет. а по­том по­мес­тил

ее в тем­ный ящик сто­ла по­верх фо­то­пла­стин­ки, за­вер­ну­той в чер­ную

бу­ма­гу. И сно­ва ура­но­вый суль­фат за­све­тил пла­стин­ку.

В те­че­ние не­сколь­ких ме­ся­цев Бек­ке­ре­лю ка­за­лось, что для то­го,

что­бы за­све­тить плас­тинку, суль­фат ура­на нуж­но пред­ва­ри­тель­но

по­дер­жать в сол­неч­ных лу­чах.

Но вско­ре он об­на­ру­жил, что пре­па­рат ура­но­во­го суль­фа­та, и не

бу­ду­чи под­верг­нут дей­ст­вию сол­неч­но­го све­та, за­све­чи­ва­ет

плас­тинку с не­мень­шей ин­тен­сив­но­стью. Яв­ле­ние ка­за­лось

та­ин­ст­вен­ным, не­по­сти­жи­мым. За­тем Бек­ке­рель от­крыл, что чис­тый

уран, не яв­лявшийся флуо­рес­ци­рую­щим ве­ще­ст­вом, про­изводит еще бо­лее

силь­ное дей­ст­вие на фото­пластинку, чем ура­но­вое со­еди­не­ние, так что

флуо­рес­цен­цию мож­но бы­ло сбро­сить со сче­тов. Да­лее Бек­ке­рель

об­на­ру­жил, что эти невиди­мые лу­чи, ис­пус­кае­мые ура­ном, об­ла­да­ли

свой­ством раз­ря­жать те­ла, не­су­щие элек­три­че­ский за­ряд. То же

свой­ст­во от­крыл Рент­ген и у икс - лу­чей. Бек­ке­рель на­звал это

не­из­вест­ное до той по­ры яв­ле­ние “ра­дио­ак­тив­но­стью”.

Лу­чи Бек­ке­ре­ля (их на­зва­ли имен­но так) бы­ли столь же уди­ви­тель­ны,

как и рент­ге­нов­ские лу­чи, и вы­зы­ва­ли у фи­зи­ков рав­ный ин­те­рес.

Два ас­си­стен­та Бек­ке­ре­ля - Пьер Кю­ри и его же­на Ма­рия ста­ли

раз­ра­ба­ты­вать эту про­бле­му. По про­ше­ст­вии не­ко­то­ро­го вре­ме­ни

Страницы: 1, 2



Реклама
В соцсетях
бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты бесплатно скачать рефераты